{"title":"Automorphisms and derivations of affine commutative and PI-algebras","authors":"Oksana Bezushchak, Anatoliy Petravchuk, Efim Zelmanov","doi":"10.1090/tran/9071","DOIUrl":null,"url":null,"abstract":"We prove analogs of A. Selberg’s result for finitely generated subgroups of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Aut</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Aut}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of Engel’s theorem for subalgebras of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D e r left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Der</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Der}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a finitely generated associative commutative algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an associative commutative ring. We prove also an analog of the theorem of W. Burnside and I. Schur about local finiteness of torsion subgroups of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Aut</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Aut}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9071","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove analogs of A. Selberg’s result for finitely generated subgroups of Aut(A)\operatorname {Aut}(A) and of Engel’s theorem for subalgebras of Der(A)\operatorname {Der}(A) for a finitely generated associative commutative algebra AA over an associative commutative ring. We prove also an analog of the theorem of W. Burnside and I. Schur about local finiteness of torsion subgroups of Aut(A)\operatorname {Aut}(A).
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.