Automorphisms and derivations of affine commutative and PI-algebras

IF 1.2 2区 数学 Q1 MATHEMATICS
Oksana Bezushchak, Anatoliy Petravchuk, Efim Zelmanov
{"title":"Automorphisms and derivations of affine commutative and PI-algebras","authors":"Oksana Bezushchak, Anatoliy Petravchuk, Efim Zelmanov","doi":"10.1090/tran/9071","DOIUrl":null,"url":null,"abstract":"We prove analogs of A. Selberg’s result for finitely generated subgroups of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Aut</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Aut}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and of Engel’s theorem for subalgebras of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper D e r left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Der</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Der}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a finitely generated associative commutative algebra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over an associative commutative ring. We prove also an analog of the theorem of W. Burnside and I. Schur about local finiteness of torsion subgroups of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A u t left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>Aut</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\operatorname {Aut}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9071","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove analogs of A. Selberg’s result for finitely generated subgroups of Aut ( A ) \operatorname {Aut}(A) and of Engel’s theorem for subalgebras of Der ( A ) \operatorname {Der}(A) for a finitely generated associative commutative algebra A A over an associative commutative ring. We prove also an analog of the theorem of W. Burnside and I. Schur about local finiteness of torsion subgroups of Aut ( A ) \operatorname {Aut}(A) .
仿射交换代数和pi -代数的自同构和导数
我们证明了A. Selberg关于有限生成的Aut (A) \operatorname {Aut}(A)子群的结果和Engel关于有限生成的结合交换代数A A在结合交换环上的Der (A) \operatorname {Der}(A)子代数的定理的类似。我们还证明了W. Burnside和I. Schur关于Aut (A) \算子名{Aut}(A)的扭转子群的局部有限性的一个类似定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信