On linear stochastic flows

IF 1.2 2区 数学 Q1 MATHEMATICS
Beniamin Goldys, Szymon Peszat
{"title":"On linear stochastic flows","authors":"Beniamin Goldys, Szymon Peszat","doi":"10.1090/tran/8782","DOIUrl":null,"url":null,"abstract":"We study the existence of the stochastic flow associated to a linear stochastic evolution equation <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal d upper X equals upper A upper X normal d t plus sigma-summation Underscript k Endscripts upper B Subscript k Baseline upper X normal d upper W Subscript k Baseline comma\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">d</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>X</mml:mi> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mi>X</mml:mi> <mml:mi mathvariant=\"normal\">d</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mi>t</mml:mi> <mml:mo>+</mml:mo> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>k</mml:mi> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mi>X</mml:mi> <mml:mi mathvariant=\"normal\">d</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} \\operatorname {d} X= AX\\operatorname {d} t +\\sum _{k} B_k X\\operatorname {d} W_k, \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> on a Hilbert space. Our first result covers the case where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the generator of a <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C 0\"> <mml:semantics> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">C_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-semigroup, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper B Subscript k Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(B_k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a sequence of bounded linear operators such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma-summation Underscript k Endscripts double-vertical-bar upper B Subscript k Baseline double-vertical-bar greater-than plus normal infinity\"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mi>k</mml:mi> </mml:munder> <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo> <mml:mo>&gt;</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\sum _k\\|B_k\\|&gt;+\\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also provide sufficient conditions for the existence of stochastic flows in the Schatten classes beyond the space of Hilbert–Schmidt operators. Some new results and examples concerning the so-called commutative case are presented as well.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8782","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of the stochastic flow associated to a linear stochastic evolution equation d X = A X d t + k B k X d W k , \begin{equation*} \operatorname {d} X= AX\operatorname {d} t +\sum _{k} B_k X\operatorname {d} W_k, \end{equation*} on a Hilbert space. Our first result covers the case where A A is the generator of a C 0 C_0 -semigroup, and ( B k ) (B_k) is a sequence of bounded linear operators such that k B k > + \sum _k\|B_k\|>+\infty . We also provide sufficient conditions for the existence of stochastic flows in the Schatten classes beyond the space of Hilbert–Schmidt operators. Some new results and examples concerning the so-called commutative case are presented as well.
关于线性随机流
研究了Hilbert空间上线性随机演化方程d (X) = a (X) d (t) +∑k (B) k (X) d (W) k, \begin{equation*} \operatorname {d} X= AX\operatorname {d} t +\sum _{k} B_k X\operatorname {d} W_k, \end{equation*}的存在性。我们的第一个结果涵盖了A A是C 0 C_0 -半群的生成器,并且(B k) (B_k)是一个有界线性算子序列,使得∑k‖B k‖&gt;+∞\sum _k\|B_k\|&gt;+ \infty。我们还提供了在Hilbert-Schmidt算子空间之外的Schatten类中随机流存在的充分条件。文中还给出了一些关于交换情况的新结果和例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信