Differential contracting homotopy in higher-spin theory

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
M. A. Vasiliev
{"title":"Differential contracting homotopy in higher-spin theory","authors":"M. A. Vasiliev","doi":"10.1007/jhep11(2023)048","DOIUrl":null,"url":null,"abstract":"A bstract A new efficient approach to the analysis of nonlinear higher-spin equations, that treats democratically auxiliary spinor variables Z A and integration homotopy parameters in the non-linear vertices of the higher-spin theory, is developed. Being most general, the proposed approach is the same time far simpler than those available so far. In particular, it is free from the necessity to use the Schouten identity. Remarkably, the problem of reconstruction of higher-spin vertices is mapped to certain polyhedra cohomology in terms of homotopy parameters themselves. The new scheme provides a powerful tool for the study of higher-order corrections in higher-spin theory and, in particular, its spin-locality. It is illustrated by the analysis of the lower order vertices, reproducing not only the results obtained previously by the shifted homotopy approach but also projectively-compact vertices with the minimal number of derivatives, that were so far unreachable within that scheme.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":" 11","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)048","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 1

Abstract

A bstract A new efficient approach to the analysis of nonlinear higher-spin equations, that treats democratically auxiliary spinor variables Z A and integration homotopy parameters in the non-linear vertices of the higher-spin theory, is developed. Being most general, the proposed approach is the same time far simpler than those available so far. In particular, it is free from the necessity to use the Schouten identity. Remarkably, the problem of reconstruction of higher-spin vertices is mapped to certain polyhedra cohomology in terms of homotopy parameters themselves. The new scheme provides a powerful tool for the study of higher-order corrections in higher-spin theory and, in particular, its spin-locality. It is illustrated by the analysis of the lower order vertices, reproducing not only the results obtained previously by the shifted homotopy approach but also projectively-compact vertices with the minimal number of derivatives, that were so far unreachable within that scheme.
高自旋理论中的微分收缩同伦
提出了一种新的分析非线性高自旋方程的有效方法,即民主地处理辅助自旋变量za和高自旋理论非线性顶点上的积分同伦参数。作为最通用的方法,所提出的方法同时比目前可用的方法简单得多。特别是,它不需要使用Schouten同一性。值得注意的是,高自旋顶点的重构问题通过同伦参数本身映射到某些多面体上同调。新方案为研究高自旋理论中的高阶修正,特别是其自旋局部性提供了强有力的工具。通过对低阶顶点的分析来说明这一点,不仅再现了先前由位移同伦方法得到的结果,而且再现了在该方案中迄今为止无法到达的具有最小导数数的投影紧致顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信