Variations on average character degrees and solvability

IF 1 3区 数学 Q1 MATHEMATICS
Neda Ahanjideh, Zeinab Akhlaghi, Kamal Aziziheris
{"title":"Variations on average character degrees and solvability","authors":"Neda Ahanjideh,&nbsp;Zeinab Akhlaghi,&nbsp;Kamal Aziziheris","doi":"10.1007/s10231-023-01393-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a finite group, <span>\\(\\mathbb {F}\\)</span> be one of the fields <span>\\(\\mathbb {Q},\\mathbb {R}\\)</span> or <span>\\(\\mathbb {C}\\)</span>, and <i>N</i> be a non-trivial normal subgroup of <i>G</i>. Let <span>\\({\\textrm{acd}}^{*}_{{\\mathbb {F}}}(G)\\)</span> and <span>\\({\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)\\)</span> be the average degree of all non-linear <span>\\(\\mathbb {F}\\)</span>-valued irreducible characters of <i>G</i> and of even degree <span>\\(\\mathbb {F}\\)</span>-valued irreducible characters of <i>G</i> whose kernels do not contain <i>N</i>, respectively. We assume the average of an empty set is zero for more convenience. In this paper we prove that if <span>\\(\\textrm{acd}^*_{\\mathbb {Q}}(G)&lt; 9/2\\)</span> or <span>\\(0&lt;\\textrm{acd}_{\\mathbb {Q},\\textrm{even}}(G|N)&lt;4\\)</span>, then <i>G</i> is solvable. Moreover, setting <span>\\(\\mathbb {F} \\in \\{\\mathbb {R},\\mathbb {C}\\}\\)</span>, we obtain the solvability of <i>G</i> by assuming <span>\\({\\textrm{acd}}^{*}_{{\\mathbb {F}}}(G)&lt;29/8\\)</span> or <span>\\(0&lt;{\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)&lt;7/2\\)</span>, and we conclude the solvability of <i>N</i> when <span>\\(0&lt;{\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)&lt;18/5\\)</span>. Replacing <i>N</i> by <i>G</i> in <span>\\({\\textrm{acd}}_{{\\mathbb {F}}, \\textrm{even}}(G|N)\\)</span> gives us an extended form of a result by Moreto and Nguyen. Examples are given to show that all the bounds are sharp.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"203 3","pages":"1061 - 1092"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01393-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a finite group, \(\mathbb {F}\) be one of the fields \(\mathbb {Q},\mathbb {R}\) or \(\mathbb {C}\), and N be a non-trivial normal subgroup of G. Let \({\textrm{acd}}^{*}_{{\mathbb {F}}}(G)\) and \({\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)\) be the average degree of all non-linear \(\mathbb {F}\)-valued irreducible characters of G and of even degree \(\mathbb {F}\)-valued irreducible characters of G whose kernels do not contain N, respectively. We assume the average of an empty set is zero for more convenience. In this paper we prove that if \(\textrm{acd}^*_{\mathbb {Q}}(G)< 9/2\) or \(0<\textrm{acd}_{\mathbb {Q},\textrm{even}}(G|N)<4\), then G is solvable. Moreover, setting \(\mathbb {F} \in \{\mathbb {R},\mathbb {C}\}\), we obtain the solvability of G by assuming \({\textrm{acd}}^{*}_{{\mathbb {F}}}(G)<29/8\) or \(0<{\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)<7/2\), and we conclude the solvability of N when \(0<{\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)<18/5\). Replacing N by G in \({\textrm{acd}}_{{\mathbb {F}}, \textrm{even}}(G|N)\) gives us an extended form of a result by Moreto and Nguyen. Examples are given to show that all the bounds are sharp.

平均字符度和可解性的变化
让 G 是一个有限群,\(\mathbb {F}\) 是域 \(\mathbb {Q},\mathbb {R}\) 或 \(\mathbb {C}\) 中的一个,N 是 G 的一个非难正则子群。让 \({\textrm{acd}}^{*}_{{\mathbb {F}}}(G)\) 和 \({\textrm{acd}}_{{\mathbb {F}}、\分别是 G 的所有非线性 \(\mathbb {F}\)-valued 不可还原字符的平均度,以及 G 的内核不包含 N 的偶数度 \(\mathbb {F}\)-valued 不可还原字符的平均度。为了方便起见,我们假设空集的平均值为零。本文将证明,如果 \(\textrm{acd}^*_{\mathbb {Q}}(G)< 9/2\) 或 \(0<\textrm{acd}_{\mathbb {Q},\textrm{even}}}(G|N)<4\), 那么 G 是可解的。此外,设置 \(\mathbb {F} \in \{\mathbb {R},\mathbb {C}\}), 我们通过假设 \({textrm{acd}^{*}_{{\mathbb {F}}(G)<29/8\) or\(0<;(0<{textrm{acd}}_{{mathbb{F}}}, \textrm{even}}}(G|N)<7/2\) 时,我们得出 N 的可解性结论。在 \({\textrm{acd}}_{\{mathbb {F}}, \textrm{even}}}(G|N)\)中用 G 替换 N 可以得到莫雷托和阮的一个结果的扩展形式。举例说明了所有边界都是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信