Relationship Between Electrical Conductivity and Supercapacitor Properties of Co3O4 Nanofibers Fabricated by Electrospinning

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hyo-Min Choi, Jong-Won Yoon
{"title":"Relationship Between Electrical Conductivity and Supercapacitor Properties of Co3O4 Nanofibers Fabricated by Electrospinning","authors":"Hyo-Min Choi,&nbsp;Jong-Won Yoon","doi":"10.1007/s13391-023-00461-0","DOIUrl":null,"url":null,"abstract":"<div><p>Co<sub>3</sub>O<sub>4</sub> with a spinel structure has been utilized as supercapacitor materials due to their active surface sites, strong absorption capacity, excellent electrochemical activity, and stability. In this study, we tried to explore the optimized electrospinning conditions, including heat-treatment temperature for Co<sub>3</sub>O<sub>4</sub> nanofiber fabrication for supercapacitor applications. The X-ray diffraction patterns of Co<sub>3</sub>O<sub>4</sub> nanofibers annealed at 600 and 800 ºC showed a cubic spinel crystal structure without a secondary phase, but CoO was found in the specimens annealed at 400 ºC. From the XPS curve fitting, Co<sup>3+</sup> increased in the Co<sup>3+</sup>/Co<sup>2+</sup> ratio with increasing heat-treatment temperature. The electrical conductivity of the Co<sub>3</sub>O<sub>4</sub> nanofibers heated at 400, 600, and 800 ºC is 7.53 × 10<sup>−3</sup>, 1.12 × 10<sup>−2</sup>, and 6.26 × 10<sup>−3</sup> Ω<sup>−1</sup> cm<sup>−1</sup>, respectively. The Co<sub>3</sub>O<sub>4</sub> nanofibers heat treated at 600 ºC showed the highest conductivity value, and the conduction mechanism was polaron hopping between Co<sup>3+</sup> and Co<sup>2+</sup>. The supercapacitor properties of Co<sub>3</sub>O<sub>4</sub> nanofibers are evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance measurement using a three-electrode system in a 3 M KOH electrolyte. The GCD tests showed that the Co<sub>3</sub>O<sub>4</sub> nanofibers heated at 600 ºC had the highest specific capacitance of 579.66 F/g. From the electrochemical impedance measurements, the charge transfer resistance (R<sub>ct</sub>) of calcined Co<sub>3</sub>O<sub>4</sub> nanofibers at 600 ºC showed the lowest value of 1.27 Ω. Also, the Co<sub>3</sub>O<sub>4</sub> nanofiber exhibits excellent cycle stability with capacitance retention over 99% until 1000 cycles at a current density of 2 A/g. Therefore, the excellent supercapacitor performance of Co<sub>3</sub>O<sub>4</sub> nanofibers annealed at 600 ºC is due to its nanofiber structure without a secondary phase providing a larger surface area and charge transfer.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 1","pages":"78 - 84"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00461-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Co3O4 with a spinel structure has been utilized as supercapacitor materials due to their active surface sites, strong absorption capacity, excellent electrochemical activity, and stability. In this study, we tried to explore the optimized electrospinning conditions, including heat-treatment temperature for Co3O4 nanofiber fabrication for supercapacitor applications. The X-ray diffraction patterns of Co3O4 nanofibers annealed at 600 and 800 ºC showed a cubic spinel crystal structure without a secondary phase, but CoO was found in the specimens annealed at 400 ºC. From the XPS curve fitting, Co3+ increased in the Co3+/Co2+ ratio with increasing heat-treatment temperature. The electrical conductivity of the Co3O4 nanofibers heated at 400, 600, and 800 ºC is 7.53 × 10−3, 1.12 × 10−2, and 6.26 × 10−3 Ω−1 cm−1, respectively. The Co3O4 nanofibers heat treated at 600 ºC showed the highest conductivity value, and the conduction mechanism was polaron hopping between Co3+ and Co2+. The supercapacitor properties of Co3O4 nanofibers are evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance measurement using a three-electrode system in a 3 M KOH electrolyte. The GCD tests showed that the Co3O4 nanofibers heated at 600 ºC had the highest specific capacitance of 579.66 F/g. From the electrochemical impedance measurements, the charge transfer resistance (Rct) of calcined Co3O4 nanofibers at 600 ºC showed the lowest value of 1.27 Ω. Also, the Co3O4 nanofiber exhibits excellent cycle stability with capacitance retention over 99% until 1000 cycles at a current density of 2 A/g. Therefore, the excellent supercapacitor performance of Co3O4 nanofibers annealed at 600 ºC is due to its nanofiber structure without a secondary phase providing a larger surface area and charge transfer.

Graphical Abstract

Abstract Image

电纺丝法制造的 Co3O4 纳米纤维的电导率与超级电容器性能之间的关系
具有尖晶石结构的 Co3O4 因其表面活性位点、强大的吸收能力、优异的电化学活性和稳定性而被用作超级电容器材料。在本研究中,我们试图探索用于制造超级电容器用 Co3O4 纳米纤维的最佳电纺条件,包括热处理温度。在 600 ºC 和 800 ºC 下退火的 Co3O4 纳米纤维的 X 射线衍射图样显示出立方尖晶石晶体结构,没有第二相,但在 400 ºC 下退火的试样中发现了 CoO。从 XPS 曲线拟合结果来看,随着热处理温度的升高,Co3+/Co2+ 的比值增大。在 400、600 和 800 ºC 下加热的 Co3O4 纳米纤维的导电率分别为 7.53 × 10-3、1.12 × 10-2 和 6.26 × 10-3 Ω-1 cm-1。在 600 ºC 下热处理的 Co3O4 纳米纤维显示出最高的电导率值,其传导机制是 Co3+ 和 Co2+ 之间的极子跳变。在 3 M KOH 电解液中使用三电极系统,通过循环伏安法(CV)、电静态充放电法(GCD)和电化学阻抗测量法评估了 Co3O4 纳米纤维的超级电容器特性。GCD 测试表明,在 600 ºC 下加热的 Co3O4 纳米纤维的比电容最高,达到 579.66 F/g。电化学阻抗测量结果表明,在 600 ºC 下煅烧的 Co3O4 纳米纤维的电荷转移电阻(Rct)最低,为 1.27 Ω。此外,Co3O4 纳米纤维还表现出优异的循环稳定性,在电流密度为 2 A/g 的条件下,循环 1000 次后电容保持率超过 99%。因此,在 600 ºC 下退火的 Co3O4 纳米纤维之所以具有优异的超级电容器性能,是因为它的纳米纤维结构没有次级相,具有更大的表面积和电荷转移能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信