Thermal fatigue characteristics of 8Y2O3-ZrO2, La2Zr2O7, La2(Zr0.7Ce0.3)2O7 and La2Ce2O7 thermal barrier coatings in duplex, multilayer functionally graded and multilayer configurations
Kirti Pasupuleti, Kevin Vattappara, Sylvester Gomes, Parvati Ramaswamy
{"title":"Thermal fatigue characteristics of 8Y2O3-ZrO2, La2Zr2O7, La2(Zr0.7Ce0.3)2O7 and La2Ce2O7 thermal barrier coatings in duplex, multilayer functionally graded and multilayer configurations","authors":"Kirti Pasupuleti, Kevin Vattappara, Sylvester Gomes, Parvati Ramaswamy","doi":"10.2298/pac2303236p","DOIUrl":null,"url":null,"abstract":"La2Zr2O7, La2(Zr0.7Ce0.3)2O7 and La2Ce2O7 pyrochlore plasma sprayable powders were synthesized and plasma spray coated on steel plates with NiCrAlY bond coat. Three different configurations were used: duplex, multilayer functionally graded and multilayer, with different combinations of commercial 8% yttria stabilized zirconia (8YSZ) and NiCrAlY (bond coat) layers. The prepared coatings were compared with the standard duplex 8YSZ thermal barrier coatings (TBCs) with a goal to study their suitability to serve as TBCs. TBCs? layer thicknesses and interfaces were studied via SEM on polished cross section metallographic samples removed from the spray coated TBCs. Thermal fatigue resistance was evaluated by directing a gas flame on the ceramic surface at 1200 and 1400 ?C, followed by its rapid withdrawal and forced cooling by pedestal fan. The maximum number of thermal shock cycles the coatings could withstand before failure was determined. The multilayered TBCs with lanthanum cerate composition stacked with 8YSZ exhibited the superior thermal fatigue resistance characteristics compared to all other studied TBCs. The findings were correlated with the crystalline phases of the ceramic coatings, obtained via XRD, and discussed in the light of existing literature.","PeriodicalId":20596,"journal":{"name":"Processing and Application of Ceramics","volume":"139 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processing and Application of Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/pac2303236p","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
La2Zr2O7, La2(Zr0.7Ce0.3)2O7 and La2Ce2O7 pyrochlore plasma sprayable powders were synthesized and plasma spray coated on steel plates with NiCrAlY bond coat. Three different configurations were used: duplex, multilayer functionally graded and multilayer, with different combinations of commercial 8% yttria stabilized zirconia (8YSZ) and NiCrAlY (bond coat) layers. The prepared coatings were compared with the standard duplex 8YSZ thermal barrier coatings (TBCs) with a goal to study their suitability to serve as TBCs. TBCs? layer thicknesses and interfaces were studied via SEM on polished cross section metallographic samples removed from the spray coated TBCs. Thermal fatigue resistance was evaluated by directing a gas flame on the ceramic surface at 1200 and 1400 ?C, followed by its rapid withdrawal and forced cooling by pedestal fan. The maximum number of thermal shock cycles the coatings could withstand before failure was determined. The multilayered TBCs with lanthanum cerate composition stacked with 8YSZ exhibited the superior thermal fatigue resistance characteristics compared to all other studied TBCs. The findings were correlated with the crystalline phases of the ceramic coatings, obtained via XRD, and discussed in the light of existing literature.