Mohammad Rashid, Md. Athar, Afzal Hussain, Norah Almadani, Ashfaq Hussain
{"title":"A recent tactic for searching CDK-7 kinase inhibitor by NCI database screening","authors":"Mohammad Rashid, Md. Athar, Afzal Hussain, Norah Almadani, Ashfaq Hussain","doi":"10.2298/jsc230624083r","DOIUrl":null,"url":null,"abstract":"The present study was based on an exploration of NCI database for searching specific CDK-7 kinase inhibitor by HTVS, SP, XP, molecular docking, molecular dynamic simulation, and ADMET evaluation. The best CDK-7 kinase inhibitors (NCI613391, NCI169676, NCI281246, NCI339580) were identified via NCI database screening. The stability of binding interaction between receptor protein and protein-ligand complex of potent finding compounds (NCI613391) further confirmed by dynamics simulations and MM-GBSA. The RMSD value of receptor and receptor-ligand complexes was analyzed, and it revealed the stability of binding interactions and remained stable throughout the simulation. The RMSF values and gyration radius of the unbound receptor and backbone atoms of the complex were found to be equal, which indicates that the drug molecule inside the CDK7 receptor is also stable. The study of MM-GBSA data also revealed stronger binding interactions of ligands to CDK7 receptors. With the exception of NCI169676, all compounds were shown to be substrates for CYP450 2D6, CYP450 3A4, inhibitors of CYP450 2C9, and non-inhibitors of p-glycoprotein. All compounds were qualified and found suitable to be as drug-likeness according to the Lipinski rule, Ghose filter, MDDR like rule, and CMC-like rule. The compound (NCI613391) was exhibited human intestinal absorption (76.08%), and display negative AMES and T.E.S.T (US-EPA) toxicity with OSIRIS property and found to be a promising CDK-7 kinase inhibitor and its efficacy may be further explored in clinical trials.","PeriodicalId":17489,"journal":{"name":"Journal of The Serbian Chemical Society","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Serbian Chemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/jsc230624083r","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was based on an exploration of NCI database for searching specific CDK-7 kinase inhibitor by HTVS, SP, XP, molecular docking, molecular dynamic simulation, and ADMET evaluation. The best CDK-7 kinase inhibitors (NCI613391, NCI169676, NCI281246, NCI339580) were identified via NCI database screening. The stability of binding interaction between receptor protein and protein-ligand complex of potent finding compounds (NCI613391) further confirmed by dynamics simulations and MM-GBSA. The RMSD value of receptor and receptor-ligand complexes was analyzed, and it revealed the stability of binding interactions and remained stable throughout the simulation. The RMSF values and gyration radius of the unbound receptor and backbone atoms of the complex were found to be equal, which indicates that the drug molecule inside the CDK7 receptor is also stable. The study of MM-GBSA data also revealed stronger binding interactions of ligands to CDK7 receptors. With the exception of NCI169676, all compounds were shown to be substrates for CYP450 2D6, CYP450 3A4, inhibitors of CYP450 2C9, and non-inhibitors of p-glycoprotein. All compounds were qualified and found suitable to be as drug-likeness according to the Lipinski rule, Ghose filter, MDDR like rule, and CMC-like rule. The compound (NCI613391) was exhibited human intestinal absorption (76.08%), and display negative AMES and T.E.S.T (US-EPA) toxicity with OSIRIS property and found to be a promising CDK-7 kinase inhibitor and its efficacy may be further explored in clinical trials.
期刊介绍:
The Journal of the Serbian Chemical Society -JSCS (formerly Glasnik Hemijskog društva Beograd) publishes articles original papers that have not been published previously, from the fields of fundamental and applied chemistry:
Theoretical Chemistry, Organic Chemistry, Biochemistry and Biotechnology, Food Chemistry, Technology and Engineering, Inorganic Chemistry, Polymers, Analytical Chemistry, Physical Chemistry, Spectroscopy, Electrochemistry, Thermodynamics, Chemical Engineering, Textile Engineering, Materials, Ceramics, Metallurgy, Geochemistry, Environmental Chemistry, History of and Education in Chemistry.