There is a unique crossing-minimal rectilinear drawing of K_18

IF 0.6 3区 数学 Q3 MATHEMATICS
Bernardo M. Ábrego, Silvia Fernández Merchant, Oswin Aichholzer, Jesús Leaños, Gelasio Salazar
{"title":"There is a unique crossing-minimal rectilinear drawing of K_18","authors":"Bernardo M. Ábrego, Silvia Fernández Merchant, Oswin Aichholzer, Jesús Leaños, Gelasio Salazar","doi":"10.26493/1855-3974.2763.1e6","DOIUrl":null,"url":null,"abstract":"We show that, up to order type isomorphism, there is a unique crossing-minimal rectilinear drawing of K18. It is easily verified that this drawing does not contain any crossing-minimal drawing of K17. Therefore this settles, in the negative, the following question from Aichholzer and Krasser: is it true that, for every integer n ≥ 4, there exists a crossing-minimal drawing of Kn that contains a crossing-minimal drawing of Kn − 1?","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2763.1e6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that, up to order type isomorphism, there is a unique crossing-minimal rectilinear drawing of K18. It is easily verified that this drawing does not contain any crossing-minimal drawing of K17. Therefore this settles, in the negative, the following question from Aichholzer and Krasser: is it true that, for every integer n ≥ 4, there exists a crossing-minimal drawing of Kn that contains a crossing-minimal drawing of Kn − 1?
K_18有一个独特的交叉最小直线图
我们证明,在有序型同构下,K18存在唯一的交叉最小直线图。很容易证实这张图不包含任何K17的交叉最小图。因此,这就否定地解决了Aichholzer和Krasser提出的以下问题:对于每一个整数n≥4,是否存在一个Kn的交叉极小图,其中包含一个Kn−1的交叉极小图?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ars Mathematica Contemporanea
Ars Mathematica Contemporanea MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信