Daniel B. Drasbæk, Peter Blennow, Thomas Heiredal‐Clausen, Jeppe Rass‐Hansen, Giovanni Perin, Jens V. T. Høgh, Anne Hauch
{"title":"Exploring electrochemical impedance spectroscopy to identify and quantify degradation in commercial solid oxide electrolysis stacks","authors":"Daniel B. Drasbæk, Peter Blennow, Thomas Heiredal‐Clausen, Jeppe Rass‐Hansen, Giovanni Perin, Jens V. T. Høgh, Anne Hauch","doi":"10.1002/fuce.202300023","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we present a case where electrochemical impedance spectroscopy (EIS) on stack level enabled the identification of degradation and failure mechanisms in a 75‐cell solid oxide electrolysis cell (SOEC) stack from Topsoe. In a blind test, a defective stack (stack not passing the quality control specifications) prone to degradation was investigated with EIS. The type of stack defects was not known a priori. The purpose of the stack EIS experiment was hence to serve as a proof‐of‐concept of using EIS on the stack level for identifying degradation mechanisms. An appropriate equivalent circuit model was applied and fitted to the experimentally obtained EIS data, which enabled the quantification of the different electrochemical contributions. We hereby identified which electrochemical contribution(s) to the overall stack resistance caused the stack to degrade. Furthermore, the data was plotted in a degradation space format, which further strengthened the identification of the cause of degradation. In this work, we are exploring and utilizing the potential of advanced EIS characterization and analysis; thereby successfully identifying some of the degradation and failure mechanisms taking place in the SOEC stack. This detailed type of degradation analysis has, to the best of my knowledge, not previously reported on the commercial stack level.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"130 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/fuce.202300023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this work, we present a case where electrochemical impedance spectroscopy (EIS) on stack level enabled the identification of degradation and failure mechanisms in a 75‐cell solid oxide electrolysis cell (SOEC) stack from Topsoe. In a blind test, a defective stack (stack not passing the quality control specifications) prone to degradation was investigated with EIS. The type of stack defects was not known a priori. The purpose of the stack EIS experiment was hence to serve as a proof‐of‐concept of using EIS on the stack level for identifying degradation mechanisms. An appropriate equivalent circuit model was applied and fitted to the experimentally obtained EIS data, which enabled the quantification of the different electrochemical contributions. We hereby identified which electrochemical contribution(s) to the overall stack resistance caused the stack to degrade. Furthermore, the data was plotted in a degradation space format, which further strengthened the identification of the cause of degradation. In this work, we are exploring and utilizing the potential of advanced EIS characterization and analysis; thereby successfully identifying some of the degradation and failure mechanisms taking place in the SOEC stack. This detailed type of degradation analysis has, to the best of my knowledge, not previously reported on the commercial stack level.
期刊介绍:
This journal is only available online from 2011 onwards.
Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables.
Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in
-chemistry-
materials science-
physics-
chemical engineering-
electrical engineering-
mechanical engineering-
is included.
Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies.
Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology.
Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.