Eric Hersh, Morgan Jackson, John Menninger, Norman Shippee, Jeff Thomas, Nalini Rao
{"title":"Potential water-related risks to the electric power industry associated with changing surface water conditions","authors":"Eric Hersh, Morgan Jackson, John Menninger, Norman Shippee, Jeff Thomas, Nalini Rao","doi":"10.1111/1752-1688.13166","DOIUrl":null,"url":null,"abstract":"<p>This study identifies and summarizes potential risks to operations, regulatory compliance, supply chains, and infrastructure of the electric power industry from changing surface water conditions resulting from global climate change. The results help inform companies/utilities seeking to incorporate climate change risk in their planning and decision-making processes by ranking risk severity and likelihood of occurrence on both a regional basis and by risk receptor. The assessment includes identification of potential risks to: (1) thermal generating, (2) hydroelectric, (3) land-based renewable generating, and (4) transmission and distribution assets. These risks may result from such projected changes as reduced water availability (e.g., for hydroelectric or once-through cooling), increased water temperatures (e.g., decrease in cooling efficiency, inability to meet discharge permit conditions), increased flood severity (e.g., increased streambank erosion and/or damage to river-adjacent infrastructure), and decreased water quality (e.g., from increased transport of sediment and dissolved solids). The potential risks identified from this qualitative risk-assessment are documented in a graphical format depicting both severity and likelihood. This approach allows for comparison of risks across a portfolio and for future prioritization of adaptation strategies. A total of 32 risks were identified in the study, including nine risks to infrastructure, six risks to operations, four risks to supply chain, and 13 environmental/regulatory risks.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"60 2","pages":"331-362"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13166","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study identifies and summarizes potential risks to operations, regulatory compliance, supply chains, and infrastructure of the electric power industry from changing surface water conditions resulting from global climate change. The results help inform companies/utilities seeking to incorporate climate change risk in their planning and decision-making processes by ranking risk severity and likelihood of occurrence on both a regional basis and by risk receptor. The assessment includes identification of potential risks to: (1) thermal generating, (2) hydroelectric, (3) land-based renewable generating, and (4) transmission and distribution assets. These risks may result from such projected changes as reduced water availability (e.g., for hydroelectric or once-through cooling), increased water temperatures (e.g., decrease in cooling efficiency, inability to meet discharge permit conditions), increased flood severity (e.g., increased streambank erosion and/or damage to river-adjacent infrastructure), and decreased water quality (e.g., from increased transport of sediment and dissolved solids). The potential risks identified from this qualitative risk-assessment are documented in a graphical format depicting both severity and likelihood. This approach allows for comparison of risks across a portfolio and for future prioritization of adaptation strategies. A total of 32 risks were identified in the study, including nine risks to infrastructure, six risks to operations, four risks to supply chain, and 13 environmental/regulatory risks.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.