Change of Electrical and Transport Properties of Nickel Oxide by Carrier Concentration and Temperature through First-Principle Calculations

Q1 Engineering
Nayem Md. Reza Shah, Chang-Dong Yeo, Minyeong Choi, Yang-Ki Hong, Jeong H. You
{"title":"Change of Electrical and Transport Properties of Nickel Oxide by Carrier Concentration and Temperature through First-Principle Calculations","authors":"Nayem Md. Reza Shah, Chang-Dong Yeo, Minyeong Choi, Yang-Ki Hong, Jeong H. You","doi":"10.1007/s41871-023-00215-4","DOIUrl":null,"url":null,"abstract":"Abstract Nickel is typically used as one of the main components in electrical contact devices or connectors. Nickel oxide (NiO) is usually formed on the surfaces of electrodes and can negatively impact system performance by introducing electrical contact resistance. The thermal, electrical, and transport properties of NiO, as a Mott insulator or a p-type semiconductor, can be altered by operating and environmental conditions such as temperature and stress/strain by contact. In this study, we investigate the fundamental material properties of NiO through the first-principle calculations. First, we obtain and compare the lattice parameter, magnetic moment, and electronic structure for NiO via the WIEN2K simulations with four different potentials (i.e., GGA, GGA + U, LSDA, and LSDA + U). Then, using the WIEN2K simulation results with LSDA + U potential that produces a highly accurate bandgap for NiO, we calculate the electrical conductivity and electrical part of the thermal conductivity of nickel and NiO as a function of temperature and carrier concentration through the BoltzTraP simulations. Systematic simulation results revealed that the electrical conductivity relative to the relaxation time for NiO increases with the carrier concentration, while it shows a slightly decreasing trend with temperature under a fixed carrier concentration. By contrast, the electrical part of the thermal conductivity shows an increasing trend considering carrier concentration and temperature.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41871-023-00215-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Nickel is typically used as one of the main components in electrical contact devices or connectors. Nickel oxide (NiO) is usually formed on the surfaces of electrodes and can negatively impact system performance by introducing electrical contact resistance. The thermal, electrical, and transport properties of NiO, as a Mott insulator or a p-type semiconductor, can be altered by operating and environmental conditions such as temperature and stress/strain by contact. In this study, we investigate the fundamental material properties of NiO through the first-principle calculations. First, we obtain and compare the lattice parameter, magnetic moment, and electronic structure for NiO via the WIEN2K simulations with four different potentials (i.e., GGA, GGA + U, LSDA, and LSDA + U). Then, using the WIEN2K simulation results with LSDA + U potential that produces a highly accurate bandgap for NiO, we calculate the electrical conductivity and electrical part of the thermal conductivity of nickel and NiO as a function of temperature and carrier concentration through the BoltzTraP simulations. Systematic simulation results revealed that the electrical conductivity relative to the relaxation time for NiO increases with the carrier concentration, while it shows a slightly decreasing trend with temperature under a fixed carrier concentration. By contrast, the electrical part of the thermal conductivity shows an increasing trend considering carrier concentration and temperature.
用第一性原理计算载流子浓度和温度对氧化镍电学和输运性质的影响
摘要镍通常被用作电接触装置或连接器的主要成分之一。氧化镍(NiO)通常形成在电极表面,并通过引入电接触电阻对系统性能产生负面影响。作为Mott绝缘体或p型半导体,NiO的热、电和输运特性可以通过操作和环境条件(如温度和接触应力/应变)来改变。在本研究中,我们通过第一性原理计算研究了NiO的基本材料性质。首先,我们通过WIEN2K模拟(GGA、GGA + U、LSDA和LSDA + U)得到了NiO的晶格参数、磁矩和电子结构,并对其进行了比较。然后,利用具有LSDA + U电位的WIEN2K模拟结果,得到了NiO高精度的带隙。我们通过BoltzTraP模拟计算了镍和NiO的电导率和热导率的电部分作为温度和载流子浓度的函数。系统模拟结果表明,在一定载流子浓度下,NiO的电导率随载流子浓度的增加而增加,随温度的升高而略有下降。相比之下,考虑载流子浓度和温度,导热系数的电性部分呈增加趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomanufacturing and Metrology
Nanomanufacturing and Metrology Materials Science-Materials Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
36
期刊介绍: Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信