Design of 28/38-GHz Dual-Band Millimeter Wave Antenna based on SIW for Future Cellular Communication Systems

IF 1.4 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Khaled A. M. Al Soufy, Nagi H. Al-Ashwal, Faisal S. Al-Kamali, Redhwan Saad, Majed A. AL-Sayadi
{"title":"Design of 28/38-GHz Dual-Band Millimeter Wave Antenna based on SIW for Future Cellular Communication Systems","authors":"Khaled A. M. Al Soufy, Nagi H. Al-Ashwal, Faisal S. Al-Kamali, Redhwan Saad, Majed A. AL-Sayadi","doi":"10.5815/ijwmt.2023.05.04","DOIUrl":null,"url":null,"abstract":"The millimeter wave (mmWave) band has gained significant attention due to its potential to cater to the rapidly increasing wireless data rates. Due to the reduced wavelength in mmWave communications, it is possible to implement large antenna arrays at both the transmitter and the receiver. Designing small antennas in the mmWave range presents many challenges, which is the main aim of this paper. The aim of this work is to proposed an efficient design of a dual-band mmWave antenna, with the dimension of 26.5mm×7.0mm×0.254mm, for future cellular communication systems using a substrate integrated waveguide (SIW). The elements of the proposed antenna consist of SIW cavity with one longer longitudinal slot and another shorter engraved slot in one of the conducting planes (1×2) for 28 GHz and 38 GHz, respectively. The substrate duroid 5880/Rogers are used with a loss tangent and dielectric constant of 0.003 and 2.2, respectively. The CST Microwave Studio, an industry-standard software, was utilized to conduct the simulation results. The proposed antenna's performance was evaluated by analyzing its gain, radiation pattern, and return loss at the frequencies of 28 GHz and 38 GHz. Furthermore, it is compared with other relative works. The single antenna element was able to attain an impedance bandwidth (S11< -10 dB) of 1.32 GHz and 3.1 GHz, with a satisfactory gain of 6.1 dBi and 5.81 dBi at 28 GHz and 38 GHz, respectively. The results indicate that the designed antenna can attain consistent and adjustable dual-frequency performance, making it a viable option for future cellular communication systems.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijwmt.2023.05.04","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The millimeter wave (mmWave) band has gained significant attention due to its potential to cater to the rapidly increasing wireless data rates. Due to the reduced wavelength in mmWave communications, it is possible to implement large antenna arrays at both the transmitter and the receiver. Designing small antennas in the mmWave range presents many challenges, which is the main aim of this paper. The aim of this work is to proposed an efficient design of a dual-band mmWave antenna, with the dimension of 26.5mm×7.0mm×0.254mm, for future cellular communication systems using a substrate integrated waveguide (SIW). The elements of the proposed antenna consist of SIW cavity with one longer longitudinal slot and another shorter engraved slot in one of the conducting planes (1×2) for 28 GHz and 38 GHz, respectively. The substrate duroid 5880/Rogers are used with a loss tangent and dielectric constant of 0.003 and 2.2, respectively. The CST Microwave Studio, an industry-standard software, was utilized to conduct the simulation results. The proposed antenna's performance was evaluated by analyzing its gain, radiation pattern, and return loss at the frequencies of 28 GHz and 38 GHz. Furthermore, it is compared with other relative works. The single antenna element was able to attain an impedance bandwidth (S11< -10 dB) of 1.32 GHz and 3.1 GHz, with a satisfactory gain of 6.1 dBi and 5.81 dBi at 28 GHz and 38 GHz, respectively. The results indicate that the designed antenna can attain consistent and adjustable dual-frequency performance, making it a viable option for future cellular communication systems.
面向未来蜂窝通信系统的基于SIW的28/38 ghz双频毫米波天线设计
毫米波(mmWave)频段因其满足快速增长的无线数据速率的潜力而受到了极大的关注。由于毫米波通信中的波长减少,可以在发射器和接收器上实现大型天线阵列。设计毫米波范围内的小型天线面临许多挑战,这是本文的主要目的。这项工作的目的是提出一种有效的双频毫米波天线设计,尺寸为26.5mm×7.0mm×0.254mm,用于未来使用基板集成波导(SIW)的蜂窝通信系统。所提出的天线元件由具有一个较长的纵向槽和另一个较短的雕刻槽的SIW腔组成,分别在28 GHz和38 GHz的一个导电平面(1×2)上。衬底duoid为5880/Rogers,损耗正切和介电常数分别为0.003和2.2。利用工业标准软件CST Microwave Studio进行仿真结果分析。通过分析天线在28ghz和38ghz频率下的增益、辐射方向图和回波损耗,对天线的性能进行了评价。并与其他相关著作进行了比较。单天线元件能够获得1.32 GHz和3.1 GHz的阻抗带宽(S11< -10 dB),在28 GHz和38 GHz时分别具有令人满意的6.1 dBi和5.81 dBi增益。结果表明,所设计的天线可以获得一致的、可调的双频性能,使其成为未来蜂窝通信系统的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Microwave and Wireless Technologies
International Journal of Microwave and Wireless Technologies ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
3.50
自引率
7.10%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信