Pre-intercalation: A valuable approach for the improvement of post-lithium battery materials

IF 42.9 Q1 ELECTROCHEMISTRY
Charlie A.F. Nason, Yang Xu
{"title":"Pre-intercalation: A valuable approach for the improvement of post-lithium battery materials","authors":"Charlie A.F. Nason,&nbsp;Yang Xu","doi":"10.1016/j.esci.2023.100183","DOIUrl":null,"url":null,"abstract":"<div><p>With the growing concern around the sustainability and supply of lithium, the need for alternative rechargeable energy storage technologies has become ever more pressing. Sodium-, potassium-, magnesium-, and zinc-ion batteries are fast becoming viable alternatives but are held back by capacity, rate and stability problems that have not developed comparably to lithium-ion batteries. To overcome these shortcomings and reduce the reliance on lithium, electrode materials used for these post-lithium batteries must be improved. Pre-intercalation of foreign species into the lattice of promising electrode materials can enhance their electrochemical performance in comparison to the un-pre-intercalated counterparts, closing the performance gap with lithium-ion batteries. This review article covers the common methods of pre-intercalating foreign species into electrode materials, the resulting structural effects and the improvements that are observed in the materials' electrochemical performance for post-lithium batteries. Timely and impactful work reported previously are summarised as examples of these improvements, demonstrating the value and ever-growing importance of pre-intercalation in today's battery landscape.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100183"},"PeriodicalIF":42.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001234/pdfft?md5=f1dcb21a4ba1440947064ad02f302e19&pid=1-s2.0-S2667141723001234-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing concern around the sustainability and supply of lithium, the need for alternative rechargeable energy storage technologies has become ever more pressing. Sodium-, potassium-, magnesium-, and zinc-ion batteries are fast becoming viable alternatives but are held back by capacity, rate and stability problems that have not developed comparably to lithium-ion batteries. To overcome these shortcomings and reduce the reliance on lithium, electrode materials used for these post-lithium batteries must be improved. Pre-intercalation of foreign species into the lattice of promising electrode materials can enhance their electrochemical performance in comparison to the un-pre-intercalated counterparts, closing the performance gap with lithium-ion batteries. This review article covers the common methods of pre-intercalating foreign species into electrode materials, the resulting structural effects and the improvements that are observed in the materials' electrochemical performance for post-lithium batteries. Timely and impactful work reported previously are summarised as examples of these improvements, demonstrating the value and ever-growing importance of pre-intercalation in today's battery landscape.

Abstract Image

Abstract Image

预迭代:改进后锂电池材料的重要方法
随着人们对锂的可持续性和供应问题的日益关注,对替代充电储能技术的需求变得日益迫切。钠离子、钾离子、镁离子和锌离子电池正迅速成为可行的替代品,但由于容量、速率和稳定性等问题,其发展速度无法与锂离子电池相比。为了克服这些缺点并减少对锂的依赖,必须改进这些后锂电池的电极材料。在有前景的电极材料晶格中预掺杂外来物质,可提高其电化学性能,缩小与锂离子电池的性能差距。这篇综述文章涵盖了在电极材料中预钝化外来物质的常用方法、由此产生的结构效应以及在后锂电池中观察到的材料电化学性能的改善。文章以这些改进为例,总结了之前报道的具有影响力的及时工作,展示了预迭代在当今电池领域的价值和日益增长的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信