Soft Surface Activated Bonding of Hydrophobic Silicon Substrates

Quentin Lomonaco, Karine Abadie, Jean-Michel Hartmann, Christophe Morales, Paul Noël, Tanguy Marion, Christophe Lecouvey, Anne-Marie Papon, Frank Fournel
{"title":"Soft Surface Activated Bonding of Hydrophobic Silicon Substrates","authors":"Quentin Lomonaco, Karine Abadie, Jean-Michel Hartmann, Christophe Morales, Paul Noël, Tanguy Marion, Christophe Lecouvey, Anne-Marie Papon, Frank Fournel","doi":"10.1149/11203.0139ecst","DOIUrl":null,"url":null,"abstract":"Surface Activated Bonding (SAB) is interesting for strong silicon to silicon bonding at room temperature without any annealing needed, afterwards. This technique has been recognized by the scientific community for more than two decades now and was used for numerous reviewed applications. Although it is a well-known technique, the activation step, in particular, is scarcely documented. This paper offers insights about the impact of soft activation parameters on the amorphous region at the bonding interface. In addition, the adherence energy of hydrophobic silicon after SAB bonding is quantified, to better understand bonding mechanisms. Soft activation parameters on hydrophobic silicon substrates yield exceptionally thin bonding interfaces with acceptable bonding energy at room temperature. According to cross-sectional Transmission Electron Microscopy imaging, a 0.53 nm thick amorphous silicon interface was achieved with an adherence energy of 1337 ± 137 J/m² measured by the Double Cantilever Beam method.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11203.0139ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface Activated Bonding (SAB) is interesting for strong silicon to silicon bonding at room temperature without any annealing needed, afterwards. This technique has been recognized by the scientific community for more than two decades now and was used for numerous reviewed applications. Although it is a well-known technique, the activation step, in particular, is scarcely documented. This paper offers insights about the impact of soft activation parameters on the amorphous region at the bonding interface. In addition, the adherence energy of hydrophobic silicon after SAB bonding is quantified, to better understand bonding mechanisms. Soft activation parameters on hydrophobic silicon substrates yield exceptionally thin bonding interfaces with acceptable bonding energy at room temperature. According to cross-sectional Transmission Electron Microscopy imaging, a 0.53 nm thick amorphous silicon interface was achieved with an adherence energy of 1337 ± 137 J/m² measured by the Double Cantilever Beam method.
疏水硅衬底的软表面活化键合
表面活化键合(SAB)是一种在室温下不需要退火的硅与硅之间的强键合。这项技术已经被科学界认可了二十多年,并被用于许多经过审查的应用。虽然这是一种众所周知的技术,但激活步骤,特别是,几乎没有文档记录。本文提出了软活化参数对键合界面非晶态区影响的见解。此外,对疏水硅在SAB键合后的黏附能进行了量化,以更好地了解键合机制。疏水硅衬底上的软活化参数在室温下产生异常薄的键合界面和可接受的键合能。通过透射电镜成像,得到了0.53 nm厚的非晶硅界面,双悬臂梁法测得其粘附能为1337±137 J/m²。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信