Modeling of Proton Exchange Membrane Fuel Cell Stack and Start Strategy Optimization with a Multi-Objective Genetic Algorithm

Zhao Liu, Hui Cui Chen, Tong Zhang, Thomas von Unwerth, Carmen Meuser
{"title":"Modeling of Proton Exchange Membrane Fuel Cell Stack and Start Strategy Optimization with a Multi-Objective Genetic Algorithm","authors":"Zhao Liu, Hui Cui Chen, Tong Zhang, Thomas von Unwerth, Carmen Meuser","doi":"10.1149/11204.0243ecst","DOIUrl":null,"url":null,"abstract":"This paper proposes a non-dominated sorting genetic algorithm II (NSGA-II) for optimizing the startup strategy of a proton exchange membrane fuel cell (PEMFC) stack to improve the dynamic response capability, output voltage, and net power. First, a Simulink model of the PEMFC stack including the anode module, cathode module, water transfer module, output voltage module, and output net power module is established, and the accuracy of the stack model is verified through experiments. The three performances are then optimized simultaneously based on NSGA-II. The results show that the optimized start-up loading strategy results in a PEMFC stack that outperforms the base model in steady-state voltage, undershoot percent, and net power these three indicators with the same response time, demonstrating the success of the method in solving multiple optimization problems. This study presents an effective approach for the multi-objective optimization of the PEMFC stack, which is of guidance for engineering practice.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11204.0243ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a non-dominated sorting genetic algorithm II (NSGA-II) for optimizing the startup strategy of a proton exchange membrane fuel cell (PEMFC) stack to improve the dynamic response capability, output voltage, and net power. First, a Simulink model of the PEMFC stack including the anode module, cathode module, water transfer module, output voltage module, and output net power module is established, and the accuracy of the stack model is verified through experiments. The three performances are then optimized simultaneously based on NSGA-II. The results show that the optimized start-up loading strategy results in a PEMFC stack that outperforms the base model in steady-state voltage, undershoot percent, and net power these three indicators with the same response time, demonstrating the success of the method in solving multiple optimization problems. This study presents an effective approach for the multi-objective optimization of the PEMFC stack, which is of guidance for engineering practice.
质子交换膜燃料电池堆建模及多目标遗传算法启动策略优化
本文提出了一种非支配排序遗传算法II (NSGA-II),用于优化质子交换膜燃料电池(PEMFC)堆栈的启动策略,以提高其动态响应能力、输出电压和净功率。首先,建立了包括阳极模块、阴极模块、输水模块、输出电压模块和输出净功率模块在内的PEMFC堆叠的Simulink模型,并通过实验验证了堆叠模型的准确性。然后基于NSGA-II对三种性能进行同步优化。结果表明,优化后的启动负载策略使PEMFC堆栈在稳态电压、欠燃率和净功率这三个指标上优于基本模型,且响应时间相同,表明该方法在解决多个优化问题方面取得了成功。该研究为PEMFC堆的多目标优化提供了一种有效的方法,对工程实践具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信