Analytical Solution for the Two-Layered Composite Beam-Column with Interlayer Slip and Constant Axial Load

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
István Ecsedi, Attila Baksa, Ákos József Lengyel, Dávid Gönczi
{"title":"Analytical Solution for the Two-Layered Composite Beam-Column with Interlayer Slip and Constant Axial Load","authors":"István Ecsedi, Attila Baksa, Ákos József Lengyel, Dávid Gönczi","doi":"10.21791/ijems.2023.022","DOIUrl":null,"url":null,"abstract":"The authors present an analytical solution for the two-layered composite beams with imperfect shear connections. The considered beam is simply supported at both ends. The beam is subjected to transverse and axial loads. The kinematic assumptions of the Euler-Bernoulli beam theory are used. The connection of the beam components is perfect in normal direction, but the axial displacement field may have jump. The shear axial force derived from the imperfect connection is proportional to the relative slip occurring between the layers. The determination of the analytical solution is based on the Fourier method. Two examples illustrate the application of the presented analytical method.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21791/ijems.2023.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The authors present an analytical solution for the two-layered composite beams with imperfect shear connections. The considered beam is simply supported at both ends. The beam is subjected to transverse and axial loads. The kinematic assumptions of the Euler-Bernoulli beam theory are used. The connection of the beam components is perfect in normal direction, but the axial displacement field may have jump. The shear axial force derived from the imperfect connection is proportional to the relative slip occurring between the layers. The determination of the analytical solution is based on the Fourier method. Two examples illustrate the application of the presented analytical method.
考虑层间滑移和轴向荷载的双层组合梁柱解析解
本文给出了具有不完全剪切连接的两层组合梁的解析解。所考虑的梁在两端简单支承。梁承受横向和轴向载荷。采用欧拉-伯努利梁理论的运动学假设。梁构件在法向上连接良好,但轴向位移场可能出现跳变。不完全连接产生的轴向剪切力与层间发生的相对滑移成正比。解析解的确定是基于傅里叶方法。两个例子说明了所提出的分析方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
6.20%
发文量
57
审稿时长
20 weeks
期刊介绍: IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信