Liquid Water Permeability in a Hydrophobic Microporous Layer for the Anode Interdigitated Flow Field of a Gas-Liquid Separating Polymer Electrolyte Membrane Water Electrolyzer

Shunji Kubota, Hironori Nakajima, Motohiko Sato, Asuka Shima, Masato Sakurai, Yoshitsugu Sone
{"title":"Liquid Water Permeability in a Hydrophobic Microporous Layer for the Anode Interdigitated Flow Field of a Gas-Liquid Separating Polymer Electrolyte Membrane Water Electrolyzer","authors":"Shunji Kubota, Hironori Nakajima, Motohiko Sato, Asuka Shima, Masato Sakurai, Yoshitsugu Sone","doi":"10.1149/11204.0207ecst","DOIUrl":null,"url":null,"abstract":"A novel interdigitated flow field for polymer electrolyte membrane water electrolyzers composed of oxygen exhaust channels apart from liquid water feed channels has been developed for ground and space applications. This design can internally separate oxygen gas and liquid water between the flow channels, dispensing with water circulators for bubble removal and external separators with natural or centrifugal buoyancy. In this electrolyzer, pressurized liquid water is injected in the in-plane direction from the water channels to the catalyst layer through the hydrophobic microporous layer (MPL) of the anode porous transport layer. The produced oxygen gas is discharged in the through-plane direction of the MPL, taking advantage of the capillary pressure in the MPL. This study conducted liquid water permeability tests on the MPL with pressurized water. We find gradual permeability decreases with time for different liquid water pressures. The permeability will be a useful parameter for the optimal structural designs of this electrolyzer.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11204.0207ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel interdigitated flow field for polymer electrolyte membrane water electrolyzers composed of oxygen exhaust channels apart from liquid water feed channels has been developed for ground and space applications. This design can internally separate oxygen gas and liquid water between the flow channels, dispensing with water circulators for bubble removal and external separators with natural or centrifugal buoyancy. In this electrolyzer, pressurized liquid water is injected in the in-plane direction from the water channels to the catalyst layer through the hydrophobic microporous layer (MPL) of the anode porous transport layer. The produced oxygen gas is discharged in the through-plane direction of the MPL, taking advantage of the capillary pressure in the MPL. This study conducted liquid water permeability tests on the MPL with pressurized water. We find gradual permeability decreases with time for different liquid water pressures. The permeability will be a useful parameter for the optimal structural designs of this electrolyzer.
疏水微孔层中液态水在气液分离聚合物电解质膜式电解槽阳极交叉流场中的渗透性
在地面和空间应用中,开发了一种由除液态水进料通道外的氧气排气通道组成的新型聚合物电解质膜式水电解槽的交错流场。这种设计可以在内部分离气流通道之间的氧气和液态水,省去了用于去除气泡的水循环器和具有自然浮力或离心浮力的外部分离器。在该电解槽中,加压液态水通过阳极多孔传输层的疏水微孔层(MPL)从水道沿平面方向注入催化剂层。利用MPL内的毛细压力,产生的氧气沿MPL的通平面方向排出。采用加压水对MPL进行了液态水渗透性试验。我们发现,对于不同的液态水压力,渗透率随时间逐渐降低。磁导率是电解槽结构优化设计的重要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信