Water Transport Modeling in a Microporous Layer for a Polymer Electrolyte Membrane Water Electrolyzer Having a Gas-Liquid Separating Interdigitated Flow Field

Hironori Nakajima, Henrik Ekström, Asuka Shima, Yoshitsugu Sone, Göran Lindbergh
{"title":"Water Transport Modeling in a Microporous Layer for a Polymer Electrolyte Membrane Water Electrolyzer Having a Gas-Liquid Separating Interdigitated Flow Field","authors":"Hironori Nakajima, Henrik Ekström, Asuka Shima, Yoshitsugu Sone, Göran Lindbergh","doi":"10.1149/11204.0273ecst","DOIUrl":null,"url":null,"abstract":"A new interdigitated flow field design for polymer electrolyte membrane electrolyzers has been developed for ground and space applications. It internally separates oxygen and liquid water, eliminating the water circulators to remove the bubbles and external gas-liquid separators with buoyancy. The capillary pressure in the hydrophobic microporous layer(MPL) of the anode porous transport layer enables the internal separation of oxygen gas and pressurized liquid water. A finite element model (COM-SOL Multiphysics) simulates water transport in the MPL. Electrochemical impedance spectra determine the electrochemical kinetic parameters for the model. The model accounts for the oxygen bubble coverage of the CL, liquid water saturation in the MPL, and the current ratio between liquid water and water vapor at the MPL-CL interface. The vapor from liquid water in the MPL mixes with oxygen for diffusion. The water evaporation rate based on liquid water saturation in the MPL is introduced.","PeriodicalId":11473,"journal":{"name":"ECS Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/11204.0273ecst","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new interdigitated flow field design for polymer electrolyte membrane electrolyzers has been developed for ground and space applications. It internally separates oxygen and liquid water, eliminating the water circulators to remove the bubbles and external gas-liquid separators with buoyancy. The capillary pressure in the hydrophobic microporous layer(MPL) of the anode porous transport layer enables the internal separation of oxygen gas and pressurized liquid water. A finite element model (COM-SOL Multiphysics) simulates water transport in the MPL. Electrochemical impedance spectra determine the electrochemical kinetic parameters for the model. The model accounts for the oxygen bubble coverage of the CL, liquid water saturation in the MPL, and the current ratio between liquid water and water vapor at the MPL-CL interface. The vapor from liquid water in the MPL mixes with oxygen for diffusion. The water evaporation rate based on liquid water saturation in the MPL is introduced.
具有气液分离交叉流场的聚合物电解质膜式电解槽微孔层中水输运模型
本文提出了一种用于地面和空间应用的聚合物电解质膜式电解槽的新型交叉流场设计。它内部分离氧气和液态水,消除水循环器去除气泡,外部气液分离器具有浮力。阳极多孔输运层疏水微孔层(MPL)中的毛细压力使氧气和加压液态水在内部分离。一个有限元模型(COM-SOL Multiphysics)模拟了MPL中的水输送。电化学阻抗谱决定了模型的电化学动力学参数。该模型考虑了CL的氧泡覆盖率、MPL中的液态水饱和度以及MPL-CL界面上液态水与水蒸气的电流比。MPL中来自液态水的蒸汽与氧气混合以进行扩散。介绍了MPL中基于液态水饱和度的水分蒸发速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信