{"title":"Manufacturing Process Optimization and Tool Condition Monitoring in Mechanical Engineering","authors":"Krisztián Deák, József Menyhárt","doi":"10.21791/ijems.2023.026","DOIUrl":null,"url":null,"abstract":"The optimization of manufacturing and production processes with various computer software is essential these days. Solutions on the market allow us to optimize and improve our manufacturing and production processes; one of the most popular software is called Tecnomatrix, which is described in this paper. Tool condition monitoring is a vital part of the manufacturing process in the industry. It requires continuous measurement of the wear of the cutting tool edges to improve the surface quality of the work piece and maintain productivity. Multiple methods are available for the determination of the actual condition of the cutting tool. Vibration diagnostics and acoustic methods are included in this paper. These methods are simple, it requires only high sensitive sensors, microphones, and data acquisition unit to gather the vibration signal and make signal improvement. Extended Taylor equation is applied for tool edge wear ratio. Labview and Matlab software are applied for the measurement and the digital signal processing. Machine learning method with artificial neural network is for the detection and prediction of the edge wear to estimate the remaining useful lifetime (RUL) of the tool.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21791/ijems.2023.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The optimization of manufacturing and production processes with various computer software is essential these days. Solutions on the market allow us to optimize and improve our manufacturing and production processes; one of the most popular software is called Tecnomatrix, which is described in this paper. Tool condition monitoring is a vital part of the manufacturing process in the industry. It requires continuous measurement of the wear of the cutting tool edges to improve the surface quality of the work piece and maintain productivity. Multiple methods are available for the determination of the actual condition of the cutting tool. Vibration diagnostics and acoustic methods are included in this paper. These methods are simple, it requires only high sensitive sensors, microphones, and data acquisition unit to gather the vibration signal and make signal improvement. Extended Taylor equation is applied for tool edge wear ratio. Labview and Matlab software are applied for the measurement and the digital signal processing. Machine learning method with artificial neural network is for the detection and prediction of the edge wear to estimate the remaining useful lifetime (RUL) of the tool.
期刊介绍:
IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.