{"title":"Antixenosis and antibiosis mechanisms of resistance to Asian rice gall midge, Orseolia oryzae (Wood-Mason) in rice land races","authors":"Nandini Sahu, Basana Gowda Gadratagi, Govindharaj Guru-Pirasanna-Pandi, Naveenkumar B. Patil, Nabaneeta Basak, Prakash Chandra Rath, Chandrappa Anilkumar, Ladu Kishore Rath","doi":"10.1111/aab.12876","DOIUrl":null,"url":null,"abstract":"<p>Asian rice gall midge is one of the important pests of rice, which attacks the crop from nursery to the end of the tillering stage. Managing this pest through plant resistance is the most viable and economical. Two hundred-two rice genotypes were phenotyped against Asian rice gall midge, <i>Orseolia oryzae</i> (Wood-Mason) and the mechanism of resistance in terms of antixenosis and antibiosis was studied. Antixenosis mechanism for adult settlement and egg laying indicated that the susceptible genotypes were preferred more than the resistant genotypes in a free choice test. First instar maggots were found and did not continue their growth on resistant genotypes further. However, in susceptible genotypes, they molted successfully and emerged as adults. No choice tests revealed that the emergence of adults in susceptible genotypes took less time than in resistant genotypes. Higher adult sex ratio was found in susceptible genotypes. Estimation of biochemical components in rice shoot apices of selected genotypes revealed that higher levels of total phenols, wax content, total flavonoids and total free amino acids were present in the resistant genotypes. Still, the number of total sugars, reducing sugars and total protein contents were significantly higher in the susceptible genotypes. Hence, the resistance mechanism in rice gall midge was displayed as a combination of antixenosis and antibiosis mechanism. The output of the study would be helpful in breeding for rice varieties resistant to Asian rice gall midge.</p>","PeriodicalId":7977,"journal":{"name":"Annals of Applied Biology","volume":"185 2","pages":"183-194"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aab.12876","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Asian rice gall midge is one of the important pests of rice, which attacks the crop from nursery to the end of the tillering stage. Managing this pest through plant resistance is the most viable and economical. Two hundred-two rice genotypes were phenotyped against Asian rice gall midge, Orseolia oryzae (Wood-Mason) and the mechanism of resistance in terms of antixenosis and antibiosis was studied. Antixenosis mechanism for adult settlement and egg laying indicated that the susceptible genotypes were preferred more than the resistant genotypes in a free choice test. First instar maggots were found and did not continue their growth on resistant genotypes further. However, in susceptible genotypes, they molted successfully and emerged as adults. No choice tests revealed that the emergence of adults in susceptible genotypes took less time than in resistant genotypes. Higher adult sex ratio was found in susceptible genotypes. Estimation of biochemical components in rice shoot apices of selected genotypes revealed that higher levels of total phenols, wax content, total flavonoids and total free amino acids were present in the resistant genotypes. Still, the number of total sugars, reducing sugars and total protein contents were significantly higher in the susceptible genotypes. Hence, the resistance mechanism in rice gall midge was displayed as a combination of antixenosis and antibiosis mechanism. The output of the study would be helpful in breeding for rice varieties resistant to Asian rice gall midge.
期刊介绍:
Annals of Applied Biology is an international journal sponsored by the Association of Applied Biologists. The journal publishes original research papers on all aspects of applied research on crop production, crop protection and the cropping ecosystem. The journal is published both online and in six printed issues per year.
Annals papers must contribute substantially to the advancement of knowledge and may, among others, encompass the scientific disciplines of:
Agronomy
Agrometeorology
Agrienvironmental sciences
Applied genomics
Applied metabolomics
Applied proteomics
Biodiversity
Biological control
Climate change
Crop ecology
Entomology
Genetic manipulation
Molecular biology
Mycology
Nematology
Pests
Plant pathology
Plant breeding & genetics
Plant physiology
Post harvest biology
Soil science
Statistics
Virology
Weed biology
Annals also welcomes reviews of interest in these subject areas. Reviews should be critical surveys of the field and offer new insights. All papers are subject to peer review. Papers must usually contribute substantially to the advancement of knowledge in applied biology but short papers discussing techniques or substantiated results, and reviews of current knowledge of interest to applied biologists will be considered for publication. Papers or reviews must not be offered to any other journal for prior or simultaneous publication and normally average seven printed pages.