Multiplicity and Stability of Normalized Solutions to Non-autonomous Schrödinger Equation with Mixed Non-linearities

Pub Date : 2023-11-09 DOI:10.1017/s0013091523000676
Xinfu Li, Li Xu, Meiling Zhu
{"title":"Multiplicity and Stability of Normalized Solutions to Non-autonomous Schrödinger Equation with Mixed Non-linearities","authors":"Xinfu Li, Li Xu, Meiling Zhu","doi":"10.1017/s0013091523000676","DOIUrl":null,"url":null,"abstract":"Abstract This paper first studies the multiplicity of normalized solutions to the non-autonomous Schrödinger equation with mixed nonlinearities \\begin{equation*} \\begin{cases} -\\Delta u=\\lambda u+h(\\epsilon x)|u|^{q-2}u+\\eta |u|^{p-2}u,\\quad x\\in \\mathbb{R}^N, \\\\ \\int_{\\mathbb{R}^N}|u|^2\\,\\textrm{d}x=a^2, \\end{cases} \\end{equation*} where $a, \\epsilon, \\eta \\gt 0$ , q is L 2 -subcritical, p is L 2 -supercritical, $\\lambda\\in \\mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier and h is a positive and continuous function. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of h when ϵ is small enough. The solutions obtained are local minimizers and probably not ground state solutions for the lack of symmetry of the potential h . Secondly, the stability of several different sets consisting of the local minimizers is analysed. Compared with the results of the corresponding autonomous equation, the appearance of the potential h increases the number of the local minimizers and the number of the stable sets. In particular, our results cover the Sobolev critical case $p=2N/(N-2)$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0013091523000676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper first studies the multiplicity of normalized solutions to the non-autonomous Schrödinger equation with mixed nonlinearities \begin{equation*} \begin{cases} -\Delta u=\lambda u+h(\epsilon x)|u|^{q-2}u+\eta |u|^{p-2}u,\quad x\in \mathbb{R}^N, \\ \int_{\mathbb{R}^N}|u|^2\,\textrm{d}x=a^2, \end{cases} \end{equation*} where $a, \epsilon, \eta \gt 0$ , q is L 2 -subcritical, p is L 2 -supercritical, $\lambda\in \mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier and h is a positive and continuous function. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of h when ϵ is small enough. The solutions obtained are local minimizers and probably not ground state solutions for the lack of symmetry of the potential h . Secondly, the stability of several different sets consisting of the local minimizers is analysed. Compared with the results of the corresponding autonomous equation, the appearance of the potential h increases the number of the local minimizers and the number of the stable sets. In particular, our results cover the Sobolev critical case $p=2N/(N-2)$ .
分享
查看原文
混合非线性非自治Schrödinger方程归一化解的多重性与稳定性
摘要本文首先研究了一类混合非线性方程\begin{equation*} \begin{cases} -\Delta u=\lambda u+h(\epsilon x)|u|^{q-2}u+\eta |u|^{p-2}u,\quad x\in \mathbb{R}^N, \\ \int_{\mathbb{R}^N}|u|^2\,\textrm{d}x=a^2, \end{cases} \end{equation*}的归一化解的多重性,其中$a, \epsilon, \eta \gt 0$, q是l2 -次临界,p是l2 -超临界,$\lambda\in \mathbb{R}$是一个以拉格朗日乘子形式出现的未知参数,h是一个正连续函数。证明了当λ足够小时,归一化解的个数至少是h的全局最大值点的个数。得到的解是局部极小值,可能不是基态解,因为势h缺乏对称性。其次,分析了由局部最小值组成的不同集合的稳定性。与相应的自治方程的结果相比,势h的出现增加了局部极小值的数量和稳定集的数量。特别地,我们的结果涵盖了Sobolev临界情况$p=2N/(N-2)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信