Anton V. Loginov, Alexander I. Aparnev, Nikolai F. Uvarov, Valentina G. Ponomareva, Alexander G. Bannov
{"title":"Synthesis of BaSnO3 as a Highly Dispersed Additive for the Preparation of Proton-Conducting Composites","authors":"Anton V. Loginov, Alexander I. Aparnev, Nikolai F. Uvarov, Valentina G. Ponomareva, Alexander G. Bannov","doi":"10.3390/jcs7110469","DOIUrl":null,"url":null,"abstract":"The process of thermolysis of barium hydroxostannate BaSn(OH)6 as a precursor for preparing barium stannate BaSnO3 has been investigated using the method of differential thermal analysis. Thermal decomposition products of the precursor were characterized using X-ray diffraction, IR spectroscopy, low-temperature nitrogen adsorption, and scanning electron microscopy. It was shown that dehydration at nearly 270 °C resulted in the formation of an X-ray amorphous multiphase product, from which single-phase barium stannate crystallized at temperatures above 600 °C. The synthesized barium stannate was used as a functional additive to prepare composite proton electrolytes in the CsHSO4-BaSnO3 system. The structural and transport properties of the obtained system were investigated. It is shown that the highly conductive state of the salt is stabilized in a wide range of temperatures. High conductivity values of composite solid electrolytes in the medium temperature range create the possibility of their use as solid electrolyte membrane materials.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":" 45","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs7110469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The process of thermolysis of barium hydroxostannate BaSn(OH)6 as a precursor for preparing barium stannate BaSnO3 has been investigated using the method of differential thermal analysis. Thermal decomposition products of the precursor were characterized using X-ray diffraction, IR spectroscopy, low-temperature nitrogen adsorption, and scanning electron microscopy. It was shown that dehydration at nearly 270 °C resulted in the formation of an X-ray amorphous multiphase product, from which single-phase barium stannate crystallized at temperatures above 600 °C. The synthesized barium stannate was used as a functional additive to prepare composite proton electrolytes in the CsHSO4-BaSnO3 system. The structural and transport properties of the obtained system were investigated. It is shown that the highly conductive state of the salt is stabilized in a wide range of temperatures. High conductivity values of composite solid electrolytes in the medium temperature range create the possibility of their use as solid electrolyte membrane materials.