MXene Nanosheets-Decorated Paper as a Green Electronics Material for Biosensing

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Shan-Chu Yu, Tzu-Yen Huang and Tzu-En Lin*, 
{"title":"MXene Nanosheets-Decorated Paper as a Green Electronics Material for Biosensing","authors":"Shan-Chu Yu,&nbsp;Tzu-Yen Huang and Tzu-En Lin*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00043","DOIUrl":null,"url":null,"abstract":"<p >This research delves into the development and optimization of MXene nanosheet-based paper electrodes, emphasizing their adaptability in green electronics and diverse applications. Xuan paper, a cellulose-based material, was identified as an ideal substrate for its mechanical attributes and capacity to accommodate MXene, further yielding outstanding electrical conductivity. The MXene paper electrode demonstrated consistent performance under various conditions, showing its potential in the field of wearable electronics and medical devices. Notably, its impressive electrothermal capabilities and environmentally conscious decomposition mechanism make it a promising candidate for future green electronic applications. Overall, this study underscores the electrode’s harmonization of performance and environmental sustainability, paving the way for its integration into futuristic electronic solutions.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research delves into the development and optimization of MXene nanosheet-based paper electrodes, emphasizing their adaptability in green electronics and diverse applications. Xuan paper, a cellulose-based material, was identified as an ideal substrate for its mechanical attributes and capacity to accommodate MXene, further yielding outstanding electrical conductivity. The MXene paper electrode demonstrated consistent performance under various conditions, showing its potential in the field of wearable electronics and medical devices. Notably, its impressive electrothermal capabilities and environmentally conscious decomposition mechanism make it a promising candidate for future green electronic applications. Overall, this study underscores the electrode’s harmonization of performance and environmental sustainability, paving the way for its integration into futuristic electronic solutions.

Abstract Image

Abstract Image

作为生物传感用绿色电子材料的 MXene 纳米片装饰纸
本研究深入探讨了基于 MXene 纳米片的纸电极的开发和优化,强调了其在绿色电子和各种应用中的适应性。宣纸是一种纤维素基材料,因其机械属性和容纳 MXene 的能力而被确定为理想的基底,并进一步产生了出色的导电性。MXene 纸电极在各种条件下均表现出稳定的性能,显示出其在可穿戴电子设备和医疗设备领域的潜力。值得注意的是,它令人印象深刻的电热能力和环保型分解机制使其成为未来绿色电子应用的理想候选材料。总之,这项研究强调了这种电极在性能和环境可持续性方面的协调性,为其融入未来的电子解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信