Optical And Numerical Topology Optimization Of Structures

Q2 Arts and Humanities
None Mrs. Avilasha B. G.,, None Dr. Ramakrishna D.S.
{"title":"Optical And Numerical Topology Optimization Of Structures","authors":"None Mrs. Avilasha B. G.,, None Dr. Ramakrishna D.S.","doi":"10.59670/jns.v35i.4547","DOIUrl":null,"url":null,"abstract":"Topology optimization is esoteric. Computer-aided design includes. Design objectives and feasibility are the goals. This study optimizes the crane hook, a common mechanical component with complex geometry, using topology. The crane hook should be light but strong. Photoelasticity allows experimental verification of the design’s stress distribution by visualizing and stress patterns in birefringent property materials.
 Formulating the topology problem, design space, objective function, and constraints starts the study. The initial design and photoelasticity optics iterations are simulated using finite element analysis. Density method Isotropic Material with Penalization algorithm optimizes by iteratively updating the density distribution to improve the objective function while satisfying constraints. The design is then prototyped using a Photoelastic birefringent material. A known load and boundary conditions under polariscope experimental set-up stress the crane hook prototype. Computational topology and finite element analysis stress distributions are compared to isochromatic fringe principal stress patterns (1–2). Experimental and simulated results validate the design’s stress, displacements, and reliability. The study showed 23.45% weight reduction while maintaining crane hook structural integrity. Photoelasticity experimentally verifies stress distribution, boosting confidence in the design. Computational simulations and photoelasticity allow mechanical component validation.","PeriodicalId":37633,"journal":{"name":"Journal of Namibian Studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Namibian Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59670/jns.v35i.4547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Topology optimization is esoteric. Computer-aided design includes. Design objectives and feasibility are the goals. This study optimizes the crane hook, a common mechanical component with complex geometry, using topology. The crane hook should be light but strong. Photoelasticity allows experimental verification of the design’s stress distribution by visualizing and stress patterns in birefringent property materials. Formulating the topology problem, design space, objective function, and constraints starts the study. The initial design and photoelasticity optics iterations are simulated using finite element analysis. Density method Isotropic Material with Penalization algorithm optimizes by iteratively updating the density distribution to improve the objective function while satisfying constraints. The design is then prototyped using a Photoelastic birefringent material. A known load and boundary conditions under polariscope experimental set-up stress the crane hook prototype. Computational topology and finite element analysis stress distributions are compared to isochromatic fringe principal stress patterns (1–2). Experimental and simulated results validate the design’s stress, displacements, and reliability. The study showed 23.45% weight reduction while maintaining crane hook structural integrity. Photoelasticity experimentally verifies stress distribution, boosting confidence in the design. Computational simulations and photoelasticity allow mechanical component validation.
结构的光学和数值拓扑优化
拓扑优化很深奥。计算机辅助设计包括。设计目标和可行性是目标。起重机吊钩是一种常见的具有复杂几何形状的机械部件,本研究利用拓扑学对其进行了优化。吊钩要轻而结实。光弹性允许通过双折射特性材料的可视化和应力模式来实验验证设计的应力分布。 确定拓扑问题、设计空间、目标函数和约束是研究的开始。采用有限元方法对初始设计和光弹性光学迭代进行了仿真。密度法各向同性材料惩罚算法在满足约束条件的情况下,通过迭代更新密度分布来优化目标函数。然后使用光弹性双折射材料制作设计原型。在已知载荷和边界条件下,偏光镜实验装置对吊钩原型进行应力分析。计算拓扑和有限元分析的应力分布与等色条纹主应力模式进行了比较(1-2)。实验和仿真结果验证了设计的应力、位移和可靠性。研究结果表明,在保持吊钩结构完整性的前提下,吊钩减重23.45%。光弹性实验验证了应力分布,增强了设计的信心。计算模拟和光弹性允许机械部件验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Namibian Studies
Journal of Namibian Studies Arts and Humanities-History
自引率
0.00%
发文量
11
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信