Magnetic properties and magnetocaloric effects in Eu(Ti,Nb,Mn)O3 perovskites

IF 5.2 1区 化学 Q1 CHEMISTRY, APPLIED
{"title":"Magnetic properties and magnetocaloric effects in Eu(Ti,Nb,Mn)O3 perovskites","authors":"","doi":"10.1016/j.jre.2023.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>In perovskite EuTiO<sub>3</sub>, the magnetic characteristics and magnetocaloric effect (MCE) can be flexibly regulated by converting the magnetism from antiferromagnetic to ferromagnetic. In the present work, a series of Eu(Ti,Nb,Mn)O<sub>3</sub> compounds, abbreviated as ETNMO for convenience of description, was fabricated and their crystallography, magnetism together with cryogenic magnetocaloric effects were systematically investigated. The crystallographic results demonstrate the cubic perovskite structure for all the compounds, with the space group of <em>Pm</em>3<em>m</em>. Two magnetic phase transitions are observed in these second-order phase transition (SOPT) materials. The joint substitution of elements Mn and Nb can considerably manipulate the magnetic phase transition process and magnetocaloric performance of the ETNMO compounds. As the Mn content increases, gradually widened –Δ<em>S</em><sub>M</sub>-<em>T</em> curves are obtained, and two peaks with a broad shoulder are observed in the –Δ<em>S</em><sub>M</sub>-<em>T</em> curves for Δ<em>μ</em><sub>0</sub><em>H</em>≤0–1 T. Under a field change of 0–5 T, the values of maximum magnetic entropy change (−Δ<span><math><mrow><msubsup><mi>S</mi><mrow><mi>M</mi></mrow><mrow><mtext>max</mtext></mrow></msubsup></mrow></math></span>) and refrigeration capacity (RC) are evaluated to be 34.7 J/(kg·K) and 364.9 J/kg for EuTi<sub>0.8625</sub>Nb<sub>0.0625</sub>Mn<sub>0.075</sub>O<sub>3</sub>, 27.8 J/(kg·K) and 367.6 J/kg for EuTi<sub>0.8375</sub>Nb<sub>0.0625</sub>Mn<sub>0.1</sub>O<sub>3</sub>, 23.2 J/(kg·K) and 369.2 J/kg for EuTi<sub>0.8125</sub>Nb<sub>0.0625</sub>Mn<sub>0.125</sub>O<sub>3</sub>, 17.1 J/(kg·K) and 357.6 J/kg for EuTi<sub>0.7875</sub>Nb<sub>0.0625</sub>Mn<sub>0.15</sub>O<sub>3</sub>, respectively. The considerable MCE parameters make the ETNMO compounds potential candidates for cryogenic magnetic refrigeration.</p></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 8","pages":"Pages 1560-1567"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002072123001734","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In perovskite EuTiO3, the magnetic characteristics and magnetocaloric effect (MCE) can be flexibly regulated by converting the magnetism from antiferromagnetic to ferromagnetic. In the present work, a series of Eu(Ti,Nb,Mn)O3 compounds, abbreviated as ETNMO for convenience of description, was fabricated and their crystallography, magnetism together with cryogenic magnetocaloric effects were systematically investigated. The crystallographic results demonstrate the cubic perovskite structure for all the compounds, with the space group of Pm3m. Two magnetic phase transitions are observed in these second-order phase transition (SOPT) materials. The joint substitution of elements Mn and Nb can considerably manipulate the magnetic phase transition process and magnetocaloric performance of the ETNMO compounds. As the Mn content increases, gradually widened –ΔSM-T curves are obtained, and two peaks with a broad shoulder are observed in the –ΔSM-T curves for Δμ0H≤0–1 T. Under a field change of 0–5 T, the values of maximum magnetic entropy change (−ΔSMmax) and refrigeration capacity (RC) are evaluated to be 34.7 J/(kg·K) and 364.9 J/kg for EuTi0.8625Nb0.0625Mn0.075O3, 27.8 J/(kg·K) and 367.6 J/kg for EuTi0.8375Nb0.0625Mn0.1O3, 23.2 J/(kg·K) and 369.2 J/kg for EuTi0.8125Nb0.0625Mn0.125O3, 17.1 J/(kg·K) and 357.6 J/kg for EuTi0.7875Nb0.0625Mn0.15O3, respectively. The considerable MCE parameters make the ETNMO compounds potential candidates for cryogenic magnetic refrigeration.

Abstract Image

Eu(Ti,Nb,Mn)O3 包晶的磁性能和磁致效应
在透辉石 EuTiO3 中,磁性特征和磁ocaloric效应(MCE)可以通过将磁性从反铁磁性转换为铁磁性来灵活调节。在本研究中,我们制备了一系列 Eu(Ti,Nb,Mn)O3 化合物(为方便描述,缩写为 ETNMO),并系统地研究了它们的晶体学、磁性以及低温磁致效应。晶体学结果表明,所有化合物都具有立方包晶结构,空间群为 Pm3m。在这些二阶相变(SOPT)材料中观察到两种磁性相变。锰和铌元素的联合取代可以在很大程度上改变 ETNMO 化合物的磁相变过程和磁致性能。在 0-5 T 的磁场变化下,最大磁熵变(-ΔSMmax)和制冷量(RC)的值分别为 34.7 J/(kg-K) 和 364.9 J/kg;EuTi0.8375Nb0.0625Mn0.1O3 为 27.8 J/(kg-K) 和 367.6 J/kg;EuTi0.8375Nb0.0625Mn0.1O3 为 23.2 J/(kg-K) 和 369.2 J/kg,EuTi0.7875Nb0.0625Mn0.15O3 分别为 17.1 J/(kg-K) 和 357.6 J/kg。可观的 MCE 参数使 ETNMO 复合物成为低温磁制冷的潜在候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rare Earths
Journal of Rare Earths 化学-应用化学
CiteScore
8.70
自引率
14.30%
发文量
374
审稿时长
1.7 months
期刊介绍: The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field. The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信