{"title":"Average Sensitivity of Graph Algorithms","authors":"Nithin Varma, Yuichi Yoshida","doi":"10.1137/21m1399592","DOIUrl":null,"url":null,"abstract":"Modern applications of graph algorithms often involve the use of the output sets (usually, a subset of edges or vertices of the input graph) as inputs to other algorithms. Since the input graphs of interest are large and dynamic, it is desirable for an algorithm’s output to not change drastically when a few random edges are removed from the input graph, so as to prevent issues in postprocessing. Alternately, having such a guarantee also means that one can revise the solution obtained by running the algorithm on the original graph in just a few places in order to obtain a solution for the new graph. We formalize this feature by introducing the notion of average sensitivity of graph algorithms, which is the average earth mover’s distance between the output distributions of an algorithm on a graph and its subgraph obtained by removing an edge, where the average is over the edges removed and the distance between two outputs is the Hamming distance. In this work, we initiate a systematic study of average sensitivity of graph algorithms. After deriving basic properties of average sensitivity such as composition, we provide efficient approximation algorithms with low average sensitivities for concrete graph problems, including the minimum spanning forest problem, the global minimum cut problem, the minimum - cut problem, and the maximum matching problem. In addition, we prove that the average sensitivity of our global minimum cut algorithm is almost optimal, by showing a nearly matching lower bound. We also show that every algorithm for the 2-coloring problem has average sensitivity linear in the number of vertices. One of the main ideas involved in designing our algorithms with low average sensitivity is the following fact: if the presence of a vertex or an edge in the solution output by an algorithm can be decided locally, then the algorithm has a low average sensitivity, allowing us to reuse the analyses of known sublinear-time algorithms and local computation algorithms. Using this fact in conjunction with our average sensitivity lower bound for 2-coloring, we show that every local computation algorithm for 2-coloring has query complexity linear in the number of vertices, thereby answering an open question.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"45 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1399592","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Modern applications of graph algorithms often involve the use of the output sets (usually, a subset of edges or vertices of the input graph) as inputs to other algorithms. Since the input graphs of interest are large and dynamic, it is desirable for an algorithm’s output to not change drastically when a few random edges are removed from the input graph, so as to prevent issues in postprocessing. Alternately, having such a guarantee also means that one can revise the solution obtained by running the algorithm on the original graph in just a few places in order to obtain a solution for the new graph. We formalize this feature by introducing the notion of average sensitivity of graph algorithms, which is the average earth mover’s distance between the output distributions of an algorithm on a graph and its subgraph obtained by removing an edge, where the average is over the edges removed and the distance between two outputs is the Hamming distance. In this work, we initiate a systematic study of average sensitivity of graph algorithms. After deriving basic properties of average sensitivity such as composition, we provide efficient approximation algorithms with low average sensitivities for concrete graph problems, including the minimum spanning forest problem, the global minimum cut problem, the minimum - cut problem, and the maximum matching problem. In addition, we prove that the average sensitivity of our global minimum cut algorithm is almost optimal, by showing a nearly matching lower bound. We also show that every algorithm for the 2-coloring problem has average sensitivity linear in the number of vertices. One of the main ideas involved in designing our algorithms with low average sensitivity is the following fact: if the presence of a vertex or an edge in the solution output by an algorithm can be decided locally, then the algorithm has a low average sensitivity, allowing us to reuse the analyses of known sublinear-time algorithms and local computation algorithms. Using this fact in conjunction with our average sensitivity lower bound for 2-coloring, we show that every local computation algorithm for 2-coloring has query complexity linear in the number of vertices, thereby answering an open question.
期刊介绍:
The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.