{"title":"Channel Characterization of Molecular Communications for Cytokine Storm in COVID-19 Patients","authors":"Saswati Pal;Sudip Misra;Nabiul Islam;Sasitharan Balasubramaniam","doi":"10.1109/TMBMC.2023.3327869","DOIUrl":null,"url":null,"abstract":"In the most severe COVID-19 cases, often the cytokine molecules produced by the immune system to fight off coronavirus infection become hyperactive. This leads to “cytokine storm”, which is a serious adverse medical condition causing multiple organ failures. In this work, we propose a system model that captures the transmission of cytokines from the alveoli, the propagation via the vascular channel, and the reception in the blood vessel wall. We analyze the impact of different diseases on induced cytokine storm. The proposed analytical model helps observe the behavior of cytokine storm in different medical conditions. We perform particle-based simulations to analyze the proposed end-to-end channel model describing the cytokine storm in terms of gain and delay, which is inspired from the existing molecular communication channel models from literature. We observe that the channel gain mostly remains unaffected for upto three times increase in the channel length, while, with four times increase, the gain increases upto 16% at 1000 rad/s frequency. We analyze the channel response to the different stimuli of interactions between the cytokines and their varying release rates. We evaluate the cytokine signal at the receiver and observe that lesser diffusion leads to higher cytokine concentration at the receiver.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10297293/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the most severe COVID-19 cases, often the cytokine molecules produced by the immune system to fight off coronavirus infection become hyperactive. This leads to “cytokine storm”, which is a serious adverse medical condition causing multiple organ failures. In this work, we propose a system model that captures the transmission of cytokines from the alveoli, the propagation via the vascular channel, and the reception in the blood vessel wall. We analyze the impact of different diseases on induced cytokine storm. The proposed analytical model helps observe the behavior of cytokine storm in different medical conditions. We perform particle-based simulations to analyze the proposed end-to-end channel model describing the cytokine storm in terms of gain and delay, which is inspired from the existing molecular communication channel models from literature. We observe that the channel gain mostly remains unaffected for upto three times increase in the channel length, while, with four times increase, the gain increases upto 16% at 1000 rad/s frequency. We analyze the channel response to the different stimuli of interactions between the cytokines and their varying release rates. We evaluate the cytokine signal at the receiver and observe that lesser diffusion leads to higher cytokine concentration at the receiver.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.