2D score-based estimation of heterogeneous treatment effects

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Steven Siwei Ye, Yanzhen Chen, Oscar Hernan Madrid Padilla
{"title":"2D score-based estimation of heterogeneous treatment effects","authors":"Steven Siwei Ye, Yanzhen Chen, Oscar Hernan Madrid Padilla","doi":"10.1515/jci-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in observational studies. However, there usually exists a trade-off between accuracy and interpretability for developing a desirable estimator for treatment effects, especially in the case when there are a large number of features in estimation. To make efforts to address the issue, we propose a score-based framework for estimating the conditional average treatment effect (CATE) function in this article. The framework integrates two components: (i) leverage the joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous treatment effects for each observation and (ii) utilize nonparametric regression trees to construct an estimator for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into subgroups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on multiple simulated data and demonstrate clear advantages of the proposed estimator over state-of-the-art methods. We also evaluate empirical performance in real-life settings, using two observational data from a clinical trial and a complex social survey, and interpret policy implications following the numerical results.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"15 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jci-2022-0016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in observational studies. However, there usually exists a trade-off between accuracy and interpretability for developing a desirable estimator for treatment effects, especially in the case when there are a large number of features in estimation. To make efforts to address the issue, we propose a score-based framework for estimating the conditional average treatment effect (CATE) function in this article. The framework integrates two components: (i) leverage the joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous treatment effects for each observation and (ii) utilize nonparametric regression trees to construct an estimator for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into subgroups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on multiple simulated data and demonstrate clear advantages of the proposed estimator over state-of-the-art methods. We also evaluate empirical performance in real-life settings, using two observational data from a clinical trial and a complex social survey, and interpret policy implications following the numerical results.
异质性治疗效果的二维评分估计
统计学家对估计和分析观察性研究中因果效应的异质性越来越感兴趣。然而,在开发治疗效果的理想估计器时,通常存在准确性和可解释性之间的权衡,特别是在估计中有大量特征的情况下。为了努力解决这个问题,我们提出了一个基于分数的框架来估计条件平均处理效果(CATE)函数。该框架集成了两个组成部分:(i)在匹配算法中利用倾向和预后评分的联合使用,以获得每个观察值的异质性治疗效果的代理;(ii)利用非参数回归树构建CATE函数条件作用于两个分数的估计器。该方法在二维网格上自然地将治疗效果分层为亚组,其轴是倾向和预后评分。我们在多个模拟数据上进行了基准实验,并证明了所提出的估计器比最先进的方法具有明显的优势。我们还利用来自临床试验和复杂社会调查的两项观察数据,评估了现实环境中的实证表现,并根据数值结果解释了政策含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信