Weikang Liu, Xinyi Wu, Shuyun Wu, Xiangxiang Zhao, Tingting Miao, Ruiyue Chu, Bin Cui, Bin Cheng, Liang Liu, Jifan Hu
{"title":"All-solid integratable device of electric field control of magnetism based on hydrogen ion migration in La1−xSrxMnO3","authors":"Weikang Liu, Xinyi Wu, Shuyun Wu, Xiangxiang Zhao, Tingting Miao, Ruiyue Chu, Bin Cui, Bin Cheng, Liang Liu, Jifan Hu","doi":"10.1063/5.0165206","DOIUrl":null,"url":null,"abstract":"Field-effect transistors based on semiconductor integration technology have come to a bottleneck, while electric field control of magnetism has great potential for applications in next-generation magnetic memory and calculators based on electron spins. Magnetic properties manipulation from a mechanism of ion migration driven by an electric field has the advantages of low energy consumption, nonvolatility, reproducibility, and durability. Here, we introduce a solid-state integratable hydrogen ion storage electrolyte silicon phosphate as the gate to achieve reversible control of magnetoresistance, magnetism, and magnetic interaction in the La1−xSrxMnO3/SrTiO3 ferromagnetic system. The controllable double-exchange interaction and spin scattering mechanism sketch the theoretical physical picture for these results. This work is expected to open up additional opportunities in the translation of electric control of magnetism into practical applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"29 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0165206","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Field-effect transistors based on semiconductor integration technology have come to a bottleneck, while electric field control of magnetism has great potential for applications in next-generation magnetic memory and calculators based on electron spins. Magnetic properties manipulation from a mechanism of ion migration driven by an electric field has the advantages of low energy consumption, nonvolatility, reproducibility, and durability. Here, we introduce a solid-state integratable hydrogen ion storage electrolyte silicon phosphate as the gate to achieve reversible control of magnetoresistance, magnetism, and magnetic interaction in the La1−xSrxMnO3/SrTiO3 ferromagnetic system. The controllable double-exchange interaction and spin scattering mechanism sketch the theoretical physical picture for these results. This work is expected to open up additional opportunities in the translation of electric control of magnetism into practical applications.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.