{"title":"Endwall heat transfer in wedge channel with teardrop pin fins, circular fins and oblong pin fins","authors":"Goveraiahgari Venkatesh, Reddygari Meenakshi Reddy, Pabbisetty Mallikarjuna Rao","doi":"10.1515/tjj-2023-0076","DOIUrl":null,"url":null,"abstract":"Abstract The turbine inlet air temperatures exhibit a significant degree of elevation, hence leading to potential adverse consequences such as the degradation of blade material integrity. Consequently, the necessity to cool the turbine blades has arisen, leading to the implementation of various cooling systems. This study aims to conduct a comparative analysis of three different types of pin fins, namely oblong, circular, and teardrop, in a wedge duct. The range of Reynolds number considered for the analysis is between 10,000 and 70,000, whereas the pin fins and endwalls are subjected to a uniform heat flux of 3280 W/m 2 . The findings suggest that the friction factor associated with teardrop pin fins is 28.4 % lesser than circular pin fins and when compared to oblong pin fins; it is reduced by 34.5 %. The findings suggest that the friction factor associated with teardrop pin fins is 14 % lower compared to oblong and circular pin fins. The TPF improves with Re, and it is 24.5 % higher than oblong pin fin geometry and 39.2 % higher than circular shaped pin fins.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"38 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The turbine inlet air temperatures exhibit a significant degree of elevation, hence leading to potential adverse consequences such as the degradation of blade material integrity. Consequently, the necessity to cool the turbine blades has arisen, leading to the implementation of various cooling systems. This study aims to conduct a comparative analysis of three different types of pin fins, namely oblong, circular, and teardrop, in a wedge duct. The range of Reynolds number considered for the analysis is between 10,000 and 70,000, whereas the pin fins and endwalls are subjected to a uniform heat flux of 3280 W/m 2 . The findings suggest that the friction factor associated with teardrop pin fins is 28.4 % lesser than circular pin fins and when compared to oblong pin fins; it is reduced by 34.5 %. The findings suggest that the friction factor associated with teardrop pin fins is 14 % lower compared to oblong and circular pin fins. The TPF improves with Re, and it is 24.5 % higher than oblong pin fin geometry and 39.2 % higher than circular shaped pin fins.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.