Orthogonal Surface-Enhanced Raman Scattering/Field-Effect Transistor Detection of Breast and Colorectal Cancer-Derived Exosomes using Graphene as a Tag-Free Diagnostic Template
Bruno Gil, Meysam Keshavarz, Dominic Wales, Ara Darzi, Eric Yeatman
{"title":"Orthogonal Surface-Enhanced Raman Scattering/Field-Effect Transistor Detection of Breast and Colorectal Cancer-Derived Exosomes using Graphene as a Tag-Free Diagnostic Template","authors":"Bruno Gil, Meysam Keshavarz, Dominic Wales, Ara Darzi, Eric Yeatman","doi":"10.1002/anbr.202300055","DOIUrl":null,"url":null,"abstract":"<p>Cancer is one of the leading causes of high mortality worldwide, affecting most of the body organs including the breast and colon. Triple-negative breast (TNBC) and colorectal cancers (CRC) usually present the poorest clinical outcomes and lowest disease-free survival rates among the different cancer types. Novel biomarkers for early detection of TNBC and CRC have been proposed throughout the years, although the rate of success remains limited. Herein, a dual method for detection of cancer-derived exosomes based on the measurement of the Raman spectra in graphene field-effect transistors (GFETs) is proposed, thereby obtaining electrical signal metrics related to the variation of the Dirac point in graphene and optical features corresponding to representative bio-molecular cancer structures in an orthogonal way. This pioneering method and classification routine can potentially be extended to other types of cancer, thus creating a unique and universal tag-free diagnostic template for early cancer diagnostics.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is one of the leading causes of high mortality worldwide, affecting most of the body organs including the breast and colon. Triple-negative breast (TNBC) and colorectal cancers (CRC) usually present the poorest clinical outcomes and lowest disease-free survival rates among the different cancer types. Novel biomarkers for early detection of TNBC and CRC have been proposed throughout the years, although the rate of success remains limited. Herein, a dual method for detection of cancer-derived exosomes based on the measurement of the Raman spectra in graphene field-effect transistors (GFETs) is proposed, thereby obtaining electrical signal metrics related to the variation of the Dirac point in graphene and optical features corresponding to representative bio-molecular cancer structures in an orthogonal way. This pioneering method and classification routine can potentially be extended to other types of cancer, thus creating a unique and universal tag-free diagnostic template for early cancer diagnostics.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.