Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)

IF 1.3 4区 工程技术 Q3 MECHANICS
Yuta Hasegawa, Naoyuki Onodera, Yuuichi Asahi, Takuya Ina, Toshiyuki Imamura, Yasuhiro Idomura
{"title":"Continuous data assimilation of large eddy simulation by lattice Boltzmann method and local ensemble transform Kalman filter (LBM-LETKF)","authors":"Yuta Hasegawa, Naoyuki Onodera, Yuuichi Asahi, Takuya Ina, Toshiyuki Imamura, Yasuhiro Idomura","doi":"10.1088/1873-7005/ad06bd","DOIUrl":null,"url":null,"abstract":"Abstract We investigate the applicability of the data assimilation (DA) to large eddy simulations based on the lattice Boltzmann method (LBM). We carry out the observing system simulation experiment of a two-dimensional (2D) forced isotropic turbulence, and examine the DA accuracy of the nudging and the local ensemble transform Kalman filter (LETKF) with spatially sparse and noisy observation data of flow fields. The advantage of the LETKF is that it does not require computing spatial interpolation and/or an inverse problem between the macroscopic variables (the density and the pressure) and the velocity distribution function of the LBM, while the nudging introduces additional models for them. The numerical experiments with <?CDATA $256\\times256$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>256</mml:mn> <mml:mo>×</mml:mo> <mml:mn>256</mml:mn> </mml:math> grids and 10% observation noise in the velocity showed that the root mean square error of the velocity in the LETKF with <?CDATA $8\\times 8$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>8</mml:mn> <mml:mo>×</mml:mo> <mml:mn>8</mml:mn> </mml:math> observation points ( <?CDATA ${\\sim} 0.1\\%$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mo>∼</mml:mo> </mml:mrow> <mml:mn>0.1</mml:mn> <mml:mi mathvariant=\"normal\">%</mml:mi> </mml:math> of the total grids) and 64 ensemble members becomes smaller than the observation noise, while the nudging requires an order of magnitude larger number of observation points to achieve the same accuracy. Another advantage of the LETKF is that it well keeps the amplitude of the energy spectrum, while only the phase error becomes larger with more sparse observation. We also see that a lack of observation data in the LETKF produces a spurious energy injection in high wavenumber regimes, leading to numerical instability. Such numerical instability is known as the catastrophic filter divergence problem, which can be suppressed by increasing the number of ensemble members. From these results, it was shown that the LETKF enables robust and accurate DA for the 2D LBM with sparse and noisy observation data.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" 42","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1873-7005/ad06bd","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We investigate the applicability of the data assimilation (DA) to large eddy simulations based on the lattice Boltzmann method (LBM). We carry out the observing system simulation experiment of a two-dimensional (2D) forced isotropic turbulence, and examine the DA accuracy of the nudging and the local ensemble transform Kalman filter (LETKF) with spatially sparse and noisy observation data of flow fields. The advantage of the LETKF is that it does not require computing spatial interpolation and/or an inverse problem between the macroscopic variables (the density and the pressure) and the velocity distribution function of the LBM, while the nudging introduces additional models for them. The numerical experiments with 256 × 256 grids and 10% observation noise in the velocity showed that the root mean square error of the velocity in the LETKF with 8 × 8 observation points ( 0.1 % of the total grids) and 64 ensemble members becomes smaller than the observation noise, while the nudging requires an order of magnitude larger number of observation points to achieve the same accuracy. Another advantage of the LETKF is that it well keeps the amplitude of the energy spectrum, while only the phase error becomes larger with more sparse observation. We also see that a lack of observation data in the LETKF produces a spurious energy injection in high wavenumber regimes, leading to numerical instability. Such numerical instability is known as the catastrophic filter divergence problem, which can be suppressed by increasing the number of ensemble members. From these results, it was shown that the LETKF enables robust and accurate DA for the 2D LBM with sparse and noisy observation data.
晶格玻尔兹曼法和局部集合变换卡尔曼滤波(LBM-LETKF)在大涡模拟中的连续同化
摘要研究了基于晶格玻尔兹曼方法(LBM)的数据同化(DA)在大涡模拟中的适用性。对二维(2D)强迫各向同性湍流观测系统进行了模拟实验,并对空间稀疏和噪声的流场观测数据进行了推入和局部集合变换卡尔曼滤波(LETKF)的数据分析精度检验。LETKF的优点是它不需要计算空间插值和/或宏观变量(密度和压力)与LBM的速度分布函数之间的逆问题,而轻推则为它们引入了额外的模型。在256 × 256网格和10%观测噪声条件下的数值实验表明,在8 × 8个观测点(约占总网格的0.1%)和64个集合成员的LETKF中,速度的均方根误差小于观测噪声,而微推需要多一个数量级的观测点才能达到相同的精度。LETKF的另一个优点是它很好地保持了能谱的幅度,而只是随着观测的稀疏,相位误差变得更大。我们还看到,LETKF中观测数据的缺乏会在高波数区域产生虚假的能量注入,从而导致数值不稳定。这种数值不稳定性被称为灾难性滤波散度问题,它可以通过增加系综成员的数量来抑制。结果表明,LETKF能够对观测数据稀疏、有噪声的二维LBM进行鲁棒、准确的数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信