Neural network predictions of drawdown from groundwater abstraction in the Egebjerg catchment, Denmark

IF 2 4区 地球科学 Q1 GEOLOGY
Mathias Busk Dahl, Troels Norvin Vilhelmsen, Trine Enemark, Thomas Mejer Hansen
{"title":"Neural network predictions of drawdown from groundwater abstraction in the Egebjerg catchment, Denmark","authors":"Mathias Busk Dahl, Troels Norvin Vilhelmsen, Trine Enemark, Thomas Mejer Hansen","doi":"10.34194/geusb.v53.8357","DOIUrl":null,"url":null,"abstract":"Results from numerical simulations play a vital role in the decision process of everyday groundwater management. However, these simulations can be time-consuming for large-scale investigations, and it can be necessary to apply approximate methods instead. This study investigates the abilities of a neural network to replicate simulated drawdown from groundwater abstraction in a numerical groundwater model of the Egebjerg catchment, Denmark. We follow a generalised methodology that uses the information within the deterministic numerical model to create a training set for the neural network to learn from and extend the method to work in a 3D Danish groundwater model case. We compare the abilities of the trained neural network with the results of conventional computations in terms of speed and accuracy and argue that this approach has the potential to improve decision support for decision-makers within groundwater management.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geus Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34194/geusb.v53.8357","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Results from numerical simulations play a vital role in the decision process of everyday groundwater management. However, these simulations can be time-consuming for large-scale investigations, and it can be necessary to apply approximate methods instead. This study investigates the abilities of a neural network to replicate simulated drawdown from groundwater abstraction in a numerical groundwater model of the Egebjerg catchment, Denmark. We follow a generalised methodology that uses the information within the deterministic numerical model to create a training set for the neural network to learn from and extend the method to work in a 3D Danish groundwater model case. We compare the abilities of the trained neural network with the results of conventional computations in terms of speed and accuracy and argue that this approach has the potential to improve decision support for decision-makers within groundwater management.
丹麦Egebjerg集水区抽取地下水的神经网络预测
数值模拟结果在日常地下水管理决策过程中起着至关重要的作用。然而,这些模拟对于大规模的研究可能是耗时的,并且可能有必要应用近似方法来代替。本研究调查了神经网络在丹麦Egebjerg集水区的数值地下水模型中复制地下水抽取模拟下降的能力。我们遵循一种广义的方法,该方法使用确定性数值模型中的信息为神经网络创建一个训练集来学习并扩展该方法以适用于三维丹麦地下水模型案例。我们将训练后的神经网络的能力与传统计算结果在速度和准确性方面进行了比较,并认为这种方法有可能改善地下水管理决策者的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geus Bulletin
Geus Bulletin GEOLOGY-
CiteScore
2.80
自引率
17.60%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信