Query-Guided Refinement and Dynamic Spans Network for Video Highlight Detection and Temporal Grounding in Online Information Systems

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yifang Xu, Yunzhuo Sun, Zien Xie, Benxiang Zhai, Youyao Jia, Sidan Du
{"title":"Query-Guided Refinement and Dynamic Spans Network for Video Highlight Detection and Temporal Grounding in Online Information Systems","authors":"Yifang Xu, Yunzhuo Sun, Zien Xie, Benxiang Zhai, Youyao Jia, Sidan Du","doi":"10.4018/ijswis.332768","DOIUrl":null,"url":null,"abstract":"With the surge in online video content, finding highlights and key video segments have garnered widespread attention. Given a textual query, video highlight detection (HD) and temporal grounding (TG) aim to predict frame-wise saliency scores from a video while concurrently locating all relevant spans. Despite recent progress in DETR-based works, these methods crudely fuse different inputs in the encoder, which limits effective cross-modal interaction. To solve this challenge, the authors design QD-Net (query-guided refinement and dynamic spans network) tailored for HD&TG. Specifically, they propose a query-guided refinement module to decouple the feature encoding from the interaction process. Furthermore, they present a dynamic span decoder that leverages learnable 2D spans as decoder queries, which accelerates training convergence for TG. On QVHighlights dataset, the proposed QD-Net achieves 61.87 HD-HIT@1 and 61.88 TG-mAP@0.5, yielding a significant improvement of +1.88 and +8.05, respectively, compared to the state-of-the-art method.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.332768","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the surge in online video content, finding highlights and key video segments have garnered widespread attention. Given a textual query, video highlight detection (HD) and temporal grounding (TG) aim to predict frame-wise saliency scores from a video while concurrently locating all relevant spans. Despite recent progress in DETR-based works, these methods crudely fuse different inputs in the encoder, which limits effective cross-modal interaction. To solve this challenge, the authors design QD-Net (query-guided refinement and dynamic spans network) tailored for HD&TG. Specifically, they propose a query-guided refinement module to decouple the feature encoding from the interaction process. Furthermore, they present a dynamic span decoder that leverages learnable 2D spans as decoder queries, which accelerates training convergence for TG. On QVHighlights dataset, the proposed QD-Net achieves 61.87 HD-HIT@1 and 61.88 TG-mAP@0.5, yielding a significant improvement of +1.88 and +8.05, respectively, compared to the state-of-the-art method.
在线信息系统中视频亮点检测和时间接地的查询导向细化和动态跨度网络
随着网络视频内容的激增,寻找视频亮点和关键视频片段受到了广泛关注。给定文本查询,视频高亮检测(HD)和时间基础(TG)旨在预测视频的帧显着性分数,同时定位所有相关跨度。尽管基于der的工作最近取得了进展,但这些方法在编码器中粗糙地融合了不同的输入,这限制了有效的跨模态交互。为了解决这一挑战,作者设计了针对hdtg量身定制的QD-Net(查询引导的细化和动态跨度网络)。具体来说,他们提出了一个查询导向的细化模块,将特征编码与交互过程解耦。此外,他们提出了一个动态跨度解码器,利用可学习的2D跨度作为解码器查询,这加速了TG的训练收敛。在QVHighlights数据集上,提出的QD-Net实现了61.87 HD-HIT@1和61.88 TG-mAP@0.5,与最先进的方法相比,分别产生了+1.88和+8.05的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信