Drought Stress Decreases Morphophysiological Characteristics of Pongamia pinnata (L.) Pierre a Biodiesel Tree

Q3 Agricultural and Biological Sciences
Ni Luh Arpiwi, I. Ketut Muksin, Song Ai Nio
{"title":"Drought Stress Decreases Morphophysiological Characteristics of Pongamia pinnata (L.) Pierre a Biodiesel Tree","authors":"Ni Luh Arpiwi, I. Ketut Muksin, Song Ai Nio","doi":"10.3923/pjbs.2023.463.471","DOIUrl":null,"url":null,"abstract":"Background and Objective: Drought stress is a condition of water shortage in plants. One tree species targeted for planting on marginal lands is Pongamia pinnata which produces oil for biodiesel feedstock. The aims of the present study were to evaluate the morphophysiological response of Pongamia pinnata and its resistance mechanism under drought stress at the seedling stage. Materials and Methods: Three months old Pongamia seedlings were given 4 treatments of watering intervals, namely every day (control) and every 7th, 14th and 21st day at field capacity indicating no stress, moderate stress, high stress and very high stress, respectively. Measurement of growth parameters was carried out every month for 4 months. Data were analyzed using one-way analysis of variance at a significance level of 5%. Results: Very high drought stress reduced plant survival to 60% at 3 MAP (month after planting) and dead at 4 MAP. Both moderate and high drought stresses slow down height growth. Both specific leaf area and leaf area ratio decreased dramatically by 45.7 and 63.74%, respectively at a very high drought stress treatment at 3 MAP. Root length decreased slightly by 18.40% at very high drought stress. Total plant dry weight decreased by 15.9 and 46.4% by high and very high drought stress respectively. Leaf pigment content decreased sharply to very high drought stress. Conclusion: Pongamia seedlings survived under moderate and high drought stress. This was achieved by reducing plant height, leaf area, dry weights and pigment content. The resistance mechanism was drought avoidance, achieved by dropping leaves and maintaining root growth.","PeriodicalId":19800,"journal":{"name":"Pakistan Journal of Biological Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Biological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3923/pjbs.2023.463.471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective: Drought stress is a condition of water shortage in plants. One tree species targeted for planting on marginal lands is Pongamia pinnata which produces oil for biodiesel feedstock. The aims of the present study were to evaluate the morphophysiological response of Pongamia pinnata and its resistance mechanism under drought stress at the seedling stage. Materials and Methods: Three months old Pongamia seedlings were given 4 treatments of watering intervals, namely every day (control) and every 7th, 14th and 21st day at field capacity indicating no stress, moderate stress, high stress and very high stress, respectively. Measurement of growth parameters was carried out every month for 4 months. Data were analyzed using one-way analysis of variance at a significance level of 5%. Results: Very high drought stress reduced plant survival to 60% at 3 MAP (month after planting) and dead at 4 MAP. Both moderate and high drought stresses slow down height growth. Both specific leaf area and leaf area ratio decreased dramatically by 45.7 and 63.74%, respectively at a very high drought stress treatment at 3 MAP. Root length decreased slightly by 18.40% at very high drought stress. Total plant dry weight decreased by 15.9 and 46.4% by high and very high drought stress respectively. Leaf pigment content decreased sharply to very high drought stress. Conclusion: Pongamia seedlings survived under moderate and high drought stress. This was achieved by reducing plant height, leaf area, dry weights and pigment content. The resistance mechanism was drought avoidance, achieved by dropping leaves and maintaining root growth.
干旱胁迫对粉红蓬形态生理特性的影响皮埃尔的生物柴油树
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pakistan Journal of Biological Sciences
Pakistan Journal of Biological Sciences Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.90
自引率
0.00%
发文量
102
期刊介绍: Pakistan Journal of Biological Sciences (PJBS) is an international, peer-reviewed and well indexed scientific journal seeks to promote and disseminate the knowledge of biological sciences by publishing outstanding research in the field. Scope of the journal includes: Cell biology, developmental biology, structural biology, microbiology, entomology, toxicology, molecular biology & genetics, biochemistry, biotechnology, biodiversity, ecology, marine biology, plant biology and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信