Algebraic and Fast Nested Construction Method for Generating Rank-Minimized ${\mathcal H}^{2}$-Matrix for Solving Electrically Large Surface Integral Equations

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Chang Yang;Dan Jiao
{"title":"Algebraic and Fast Nested Construction Method for Generating Rank-Minimized ${\\mathcal H}^{2}$-Matrix for Solving Electrically Large Surface Integral Equations","authors":"Chang Yang;Dan Jiao","doi":"10.1109/JMMCT.2023.3326774","DOIUrl":null,"url":null,"abstract":"In this work, we develop a kernel-independent and purely algebraic method, Nested Construction Method, which can construct a rank-minimized \n<inline-formula><tex-math>${\\mathcal H}^{2}$</tex-math></inline-formula>\n-matrix with low complexity based on prescribed accuracy. The time cost of this method in generating each cluster basis and coupling matrix is of \n<inline-formula><tex-math>$O(k n \\log {n})$</tex-math></inline-formula>\n, while the memory consumption scales as \n<inline-formula><tex-math>$O(k^{2})$</tex-math></inline-formula>\n, where \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n is the rank of the cluster basis, and \n<inline-formula><tex-math>$n$</tex-math></inline-formula>\n is cluster size. The accuracy and efficiency of the proposed method are demonstrated by extensive numerical experiments. In addition to surface integral equations, the proposed algorithms can also be applied to solving other electrically large integral equations.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10291033/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we develop a kernel-independent and purely algebraic method, Nested Construction Method, which can construct a rank-minimized ${\mathcal H}^{2}$ -matrix with low complexity based on prescribed accuracy. The time cost of this method in generating each cluster basis and coupling matrix is of $O(k n \log {n})$ , while the memory consumption scales as $O(k^{2})$ , where $k$ is the rank of the cluster basis, and $n$ is cluster size. The accuracy and efficiency of the proposed method are demonstrated by extensive numerical experiments. In addition to surface integral equations, the proposed algorithms can also be applied to solving other electrically large integral equations.
求解电大曲面积分方程生成秩最小化${\数学H}^{2}$-矩阵的代数快速嵌套构造方法
在这项工作中,我们开发了一种核无关的纯代数方法,即嵌套构造方法,它可以在规定精度的基础上构造一个低复杂度的秩最小化${\mathcal H}^{2}$-矩阵。该方法生成每个簇基和耦合矩阵的时间成本为$O(k n \log {n})$,而内存消耗为$O(k^{2})$,其中$k$为簇基的秩,$n$为簇大小。大量的数值实验证明了该方法的准确性和有效性。除了曲面积分方程外,所提出的算法也可应用于求解其他大型电积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信