Jia Liu, Xiangbin Meng, Gongjun Xu, Wei Gao, Ningzhong Shi
{"title":"MSAEM Estimation for Confirmatory Multidimensional Four-Parameter Normal Ogive Models","authors":"Jia Liu, Xiangbin Meng, Gongjun Xu, Wei Gao, Ningzhong Shi","doi":"10.1111/jedm.12378","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop a mixed stochastic approximation expectation-maximization (MSAEM) algorithm coupled with a Gibbs sampler to compute the marginalized maximum a posteriori estimate (MMAPE) of a confirmatory multidimensional four-parameter normal ogive (M4PNO) model. The proposed MSAEM algorithm not only has the computational advantages of the stochastic approximation expectation-maximization (SAEM) algorithm for multidimensional data, but it also alleviates the potential instability caused by label-switching, and then improved the estimation accuracy. Simulation studies are conducted to illustrate the good performance of the proposed MSAEM method, where MSAEM consistently performs better than SAEM and some other existing methods in multidimensional item response theory. Moreover, the proposed method is applied to a real data set from the 2018 Programme for International Student Assessment (PISA) to demonstrate the usefulness of the 4PNO model as well as MSAEM in practice.</p>","PeriodicalId":47871,"journal":{"name":"Journal of Educational Measurement","volume":"61 1","pages":"99-124"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Measurement","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jedm.12378","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop a mixed stochastic approximation expectation-maximization (MSAEM) algorithm coupled with a Gibbs sampler to compute the marginalized maximum a posteriori estimate (MMAPE) of a confirmatory multidimensional four-parameter normal ogive (M4PNO) model. The proposed MSAEM algorithm not only has the computational advantages of the stochastic approximation expectation-maximization (SAEM) algorithm for multidimensional data, but it also alleviates the potential instability caused by label-switching, and then improved the estimation accuracy. Simulation studies are conducted to illustrate the good performance of the proposed MSAEM method, where MSAEM consistently performs better than SAEM and some other existing methods in multidimensional item response theory. Moreover, the proposed method is applied to a real data set from the 2018 Programme for International Student Assessment (PISA) to demonstrate the usefulness of the 4PNO model as well as MSAEM in practice.
期刊介绍:
The Journal of Educational Measurement (JEM) publishes original measurement research, provides reviews of measurement publications, and reports on innovative measurement applications. The topics addressed will interest those concerned with the practice of measurement in field settings, as well as be of interest to measurement theorists. In addition to presenting new contributions to measurement theory and practice, JEM also serves as a vehicle for improving educational measurement applications in a variety of settings.