{"title":"Development of Hybrid Natural Fiber Reinforced Composite Material for Automotive Applications","authors":"Devaiah Malkapuram","doi":"10.4271/2023-28-0131","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">Industrialization concerns are stimulating research in development of new materials for automotive industries. Natural fibers which are available abundantly can be extracted naturally from environment. Preventing further pollutants on environment from depleting dwindling wood resources from forests and earth surface.</div><div class=\"htmlview paragraph\">Natural fibers are derived from renewable sources, making them environmentally friendly. Their use in composites reduces dependence on non-renewable resources and helps lower the carbon footprint of automobiles. Natural fibers, such as hemp, jute, and flax are lightweight materials. By incorporating them into polymer composites, the overall weight of automobile components can be reduced, leading to improved fuel efficiency and lower emissions. Natural fibers are generally less expensive than synthetic fibers, incorporating natural fibers into polymer composites can help reduce material costs in automobile manufacturing. Natural fiber polymer composites can be recycled at the end of their life cycle, contributing to a more sustainable automotive industry.</div><div class=\"htmlview paragraph\">In this project work, we have opted Hemp and Short carbon as fiber composite and prepared three composites of Hemp, Short Carbon and hybrid composite of both fibers. The composites are prepared by employing Hand Lay-up technique and evaluated the Density, Water Absorption Tensile Strength, Flexural Strength of the Hemp, Short Carbon and Hemp/Short Carbon fiber reinforced polymer matrix composites.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Industrialization concerns are stimulating research in development of new materials for automotive industries. Natural fibers which are available abundantly can be extracted naturally from environment. Preventing further pollutants on environment from depleting dwindling wood resources from forests and earth surface.
Natural fibers are derived from renewable sources, making them environmentally friendly. Their use in composites reduces dependence on non-renewable resources and helps lower the carbon footprint of automobiles. Natural fibers, such as hemp, jute, and flax are lightweight materials. By incorporating them into polymer composites, the overall weight of automobile components can be reduced, leading to improved fuel efficiency and lower emissions. Natural fibers are generally less expensive than synthetic fibers, incorporating natural fibers into polymer composites can help reduce material costs in automobile manufacturing. Natural fiber polymer composites can be recycled at the end of their life cycle, contributing to a more sustainable automotive industry.
In this project work, we have opted Hemp and Short carbon as fiber composite and prepared three composites of Hemp, Short Carbon and hybrid composite of both fibers. The composites are prepared by employing Hand Lay-up technique and evaluated the Density, Water Absorption Tensile Strength, Flexural Strength of the Hemp, Short Carbon and Hemp/Short Carbon fiber reinforced polymer matrix composites.
期刊介绍:
SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.