{"title":"Integration of Automatic Speed Reducers and Motion Stabilizers for Improved Turn Ability in Two-Wheelers","authors":"Ragul S, Venkatesan Radhika Venugopal Jawahar, Rudra Venugopalan, Hariharan Sankarasubramanian","doi":"10.4271/2023-28-0120","DOIUrl":null,"url":null,"abstract":"<div class=\"section abstract\"><div class=\"htmlview paragraph\">The operation of two-wheelers, or bikes, presents risks due to factors such as excessive speed, severe acceleration, and over-tilting, which may compromise the stability of the vehicle. This study proposes a solution to enhance ride safety and turn ability by integrating automatic speed reducers and a motion stabilizer, modelled using CATIA and designed from PVC material. The stabilizer is situated between the fork arms, holding a magnet, which initiates automatic braking when the magnet approaches the rim during a turn. We conducted three modes of testing, including no load and no angle, under magnetic load at zero angles, and under magnetic load at various angles in both lateral directions. Frequency data corresponding to the calculated speed was recorded using a spectrum analyzer, and we performed counterbalancing weight calculations to ensure stability. The results revealed a reduction in speed due to magnetic action. The objective was to design a setup that can be used for a safe two-wheeler ride while making a turn by reducing the speed. While it is true that the reduction in speed due to magnetic action in an Eddy current brake is an expected result, the unique contribution of our research lies in the application of this concept to enhance ride safety and turn ability in two-wheelers. This reduction in speed, although an expected outcome due to the magnetic action, was essential for improving stability and safety during turns. Future work will involve implementing this concept in a two-wheeler and conducting real-time testing while considering implementation challenges and reviewing relevant literature.</div></div>","PeriodicalId":38377,"journal":{"name":"SAE Technical Papers","volume":" 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/2023-28-0120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The operation of two-wheelers, or bikes, presents risks due to factors such as excessive speed, severe acceleration, and over-tilting, which may compromise the stability of the vehicle. This study proposes a solution to enhance ride safety and turn ability by integrating automatic speed reducers and a motion stabilizer, modelled using CATIA and designed from PVC material. The stabilizer is situated between the fork arms, holding a magnet, which initiates automatic braking when the magnet approaches the rim during a turn. We conducted three modes of testing, including no load and no angle, under magnetic load at zero angles, and under magnetic load at various angles in both lateral directions. Frequency data corresponding to the calculated speed was recorded using a spectrum analyzer, and we performed counterbalancing weight calculations to ensure stability. The results revealed a reduction in speed due to magnetic action. The objective was to design a setup that can be used for a safe two-wheeler ride while making a turn by reducing the speed. While it is true that the reduction in speed due to magnetic action in an Eddy current brake is an expected result, the unique contribution of our research lies in the application of this concept to enhance ride safety and turn ability in two-wheelers. This reduction in speed, although an expected outcome due to the magnetic action, was essential for improving stability and safety during turns. Future work will involve implementing this concept in a two-wheeler and conducting real-time testing while considering implementation challenges and reviewing relevant literature.
期刊介绍:
SAE Technical Papers are written and peer-reviewed by experts in the automotive, aerospace, and commercial vehicle industries. Browse the more than 102,000 technical papers and journal articles on the latest advances in technical research and applied technical engineering information below.