Kazuki Matsuda, Tsukasa Shimoka, Koji Murakami, Tomoya Uchimura, Koji Gotoh
{"title":"Cyclic true stress true strain relation in the large strain region of common steel for welded structures","authors":"Kazuki Matsuda, Tsukasa Shimoka, Koji Murakami, Tomoya Uchimura, Koji Gotoh","doi":"10.1080/09507116.2023.2282231","DOIUrl":null,"url":null,"abstract":"AbstractCyclic true stress - true strain curves were obtained using general-purpose shipbuilding steel in the large strain region. Test methods are incremental step test and static tensile test after cyclic loading. The stress-strain curves for static and cyclic loading were compared to investigate the cause of the difference between each other. A simple method for estimating the cyclic stress-strain curves was proposed. The diameter and curvature of the smallest cross-section of the specimen were measured using telecentric measurement device, and the true stress - true strain curve was obtained using the Bridgman correction method. Using the measurement method, cyclic stress-strain diagrams were obtained in the region where the true strain exceeded 1% by performing cyclic tensile tests using the incremental step method and static tensile tests after cyclic loading. The influence of the test method and maximum displacement conditions on the cyclic stress-strain curve was small within the scope of this study. There was little difference in the elongation between the static tensile test and the static tensile test after cyclic loading. The difference in yield stress between static and cyclic loading was discussed in terms of macro-yield mechanisms at intergranular and transgranular. A simple method for estimating cyclic stress-strain curves from a static stress-strain curve was proposed. The specimens used in this study are general-purpose shipbuilding steels, and the results should be applicable to similar steels for welding and structures.Key Words: Cyclic stress strain curveIncremental step methodStatic tensile test after cyclic loadingYield stressCommon steel for welded structuresShip Building steelTelecentric measurementDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentThis work was supported by JSPS Grant-in-Aid for Scientific Research JP20K21048.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":"123 45","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2282231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractCyclic true stress - true strain curves were obtained using general-purpose shipbuilding steel in the large strain region. Test methods are incremental step test and static tensile test after cyclic loading. The stress-strain curves for static and cyclic loading were compared to investigate the cause of the difference between each other. A simple method for estimating the cyclic stress-strain curves was proposed. The diameter and curvature of the smallest cross-section of the specimen were measured using telecentric measurement device, and the true stress - true strain curve was obtained using the Bridgman correction method. Using the measurement method, cyclic stress-strain diagrams were obtained in the region where the true strain exceeded 1% by performing cyclic tensile tests using the incremental step method and static tensile tests after cyclic loading. The influence of the test method and maximum displacement conditions on the cyclic stress-strain curve was small within the scope of this study. There was little difference in the elongation between the static tensile test and the static tensile test after cyclic loading. The difference in yield stress between static and cyclic loading was discussed in terms of macro-yield mechanisms at intergranular and transgranular. A simple method for estimating cyclic stress-strain curves from a static stress-strain curve was proposed. The specimens used in this study are general-purpose shipbuilding steels, and the results should be applicable to similar steels for welding and structures.Key Words: Cyclic stress strain curveIncremental step methodStatic tensile test after cyclic loadingYield stressCommon steel for welded structuresShip Building steelTelecentric measurementDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgmentThis work was supported by JSPS Grant-in-Aid for Scientific Research JP20K21048.
期刊介绍:
Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.