Chloé M.J. Baumas, Fatima-Ezzahra Ababou, Marc Garel, Mina Bizic, Danny Ionescu, Arthur Puzenat, Frederic A.C. Le Moigne, Hans-Peter Grossart, Christian Tamburini
{"title":"A novel method to sample individual marine snow particles for downstream molecular analyses","authors":"Chloé M.J. Baumas, Fatima-Ezzahra Ababou, Marc Garel, Mina Bizic, Danny Ionescu, Arthur Puzenat, Frederic A.C. Le Moigne, Hans-Peter Grossart, Christian Tamburini","doi":"10.1002/lom3.10590","DOIUrl":null,"url":null,"abstract":"<p>The ocean–atmosphere exchange of carbon largely depends on the balance between carbon export of particulate organic carbon (POC) as sinking marine particles, and POC remineralization by attached microbial communities. Despite the vast spectrum of types, sources, ages, shapes, and composition of individual sinking particles, they are usually considered as a bulk together with their associated microbial communities. This limits our mechanistic understanding of the biological carbon pump (BCP) and its feedback on the global carbon cycle. We established a method to sample individual particles while preserving their shape, structure, and nucleic acids by placing a jellified RNA-fixative at the bottom of drifting sediment traps. Coupling imaging of individual particles with associated 16S rRNA analysis reveals that active bacterial communities are highly heterogenous from one particles origin to another. In contrast to lab-made particles, we found that complex in situ conditions lead to heterogeneity even within the same particle type. Our new method allows to associate patterns of active prokaryotic and functional diversity to particle features, enabling the detection of potential remineralization niches. This new approach will therefore improve our understanding of the BCP and numerical representation in the context of a rapidly changing ocean.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"22 1","pages":"34-46"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10590","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10590","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ocean–atmosphere exchange of carbon largely depends on the balance between carbon export of particulate organic carbon (POC) as sinking marine particles, and POC remineralization by attached microbial communities. Despite the vast spectrum of types, sources, ages, shapes, and composition of individual sinking particles, they are usually considered as a bulk together with their associated microbial communities. This limits our mechanistic understanding of the biological carbon pump (BCP) and its feedback on the global carbon cycle. We established a method to sample individual particles while preserving their shape, structure, and nucleic acids by placing a jellified RNA-fixative at the bottom of drifting sediment traps. Coupling imaging of individual particles with associated 16S rRNA analysis reveals that active bacterial communities are highly heterogenous from one particles origin to another. In contrast to lab-made particles, we found that complex in situ conditions lead to heterogeneity even within the same particle type. Our new method allows to associate patterns of active prokaryotic and functional diversity to particle features, enabling the detection of potential remineralization niches. This new approach will therefore improve our understanding of the BCP and numerical representation in the context of a rapidly changing ocean.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.