An Analytical Approach to Contaminant Transport with Spatially and Temporally Dependent Dispersion in a Heterogeneous Porous Medium

KUSHWAHA, Sujata , YADAV, Raja Ram , KUMAR, Lav Kush , ROY, Joy
{"title":"An Analytical Approach to Contaminant Transport with Spatially and Temporally Dependent Dispersion in a Heterogeneous Porous Medium","authors":"KUSHWAHA, Sujata\n , YADAV, Raja Ram\n , KUMAR, Lav Kush\n , ROY, Joy\n ","doi":"10.17776/csj.1258286","DOIUrl":null,"url":null,"abstract":"This study presents an analytical solution to the one-dimensional advection-dispersion equation (ADE) for a semi-infinite heterogeneous aquifer system with space and time-dependent groundwater velocity and dispersion coefficient. The dispersion coefficient is assumed to be proportional to the groundwater flow velocity. In addition, retardation factor, first-order decay and zero-order production terms are also considered. Contaminants and porous media are assumed to be chemically inert. Initially, it is assumed that some uniformly distributed solutes are already present in the aquifer domain. The input point source is considered uniformly continuous and increasing nature in a semi-infinite porous medium. The solutions are obtained analytically using the Laplace Integral Transform Technique (LITT). The nature of the concentration profile of the resulting solution for different parameters in different time domains is illustrated graphically.","PeriodicalId":10906,"journal":{"name":"Cumhuriyet Science Journal","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cumhuriyet Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17776/csj.1258286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an analytical solution to the one-dimensional advection-dispersion equation (ADE) for a semi-infinite heterogeneous aquifer system with space and time-dependent groundwater velocity and dispersion coefficient. The dispersion coefficient is assumed to be proportional to the groundwater flow velocity. In addition, retardation factor, first-order decay and zero-order production terms are also considered. Contaminants and porous media are assumed to be chemically inert. Initially, it is assumed that some uniformly distributed solutes are already present in the aquifer domain. The input point source is considered uniformly continuous and increasing nature in a semi-infinite porous medium. The solutions are obtained analytically using the Laplace Integral Transform Technique (LITT). The nature of the concentration profile of the resulting solution for different parameters in different time domains is illustrated graphically.
非均质多孔介质中具有时空依赖色散的污染物输运分析方法
本文给出了地下水速度和弥散系数随时空变化的半无限非均质含水层系统一维平流-弥散方程(ADE)的解析解。分散系数假定与地下水流速成正比。此外,还考虑了延迟因子、一阶衰减和零阶产生项。污染物和多孔介质被认为是化学惰性的。最初,假定在含水层域中已经存在一些均匀分布的溶质。在半无限多孔介质中,输入点源被认为是均匀连续和递增性质的。利用拉普拉斯积分变换技术(LITT)解析求解。在不同的时间域中,对不同的参数所得到的溶液的浓度曲线的性质用图形说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
51
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信