{"title":"Diagnosing the thermostat using vehicle on-board diagnostic (OBD) data","authors":"Kazimierz Witaszek, Mirosław Witaszek","doi":"10.29354/diag/173002","DOIUrl":null,"url":null,"abstract":"The thermostat is a crucial component of a car's internal combustion engine's cooling system. Failure of the thermostat can result in undercooling or overheating of the engine. Undercooling may increase wear of engine components due to poor lubrication and lead to higher fuel consumption. Conversely, overheating can damage the engine. The engine coolant temperature is one of the fundamental parameters for the proper functioning of the engine. The vehicle's onboard diagnostics system was unable to detect the malfunction of the thermostat. As a consequence, fuel consumption increased, which was especially noticeable in winter. This paper evaluates the possibility of carrying out thermostat diagnostics using data obtained from the OBD system through a diagnostic interface ELM327, which is connected to the OBD-II connector and interfaced with Torque Pro software on a smartphone. Analysis of the data confirmed that the proposed diagnostic method was appropriate. Furthermore, the impact of the thermostat malfunction on different factors such as coolant temperature, cold engine warm-up time, parameters characterising thermostat cycling, and fuel consumption of the car were studied. It was found that, apart from the already mentioned decrease in coolant temperature, the thermostat hysteresis also decreased and the thermostat cycle time increased.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29354/diag/173002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The thermostat is a crucial component of a car's internal combustion engine's cooling system. Failure of the thermostat can result in undercooling or overheating of the engine. Undercooling may increase wear of engine components due to poor lubrication and lead to higher fuel consumption. Conversely, overheating can damage the engine. The engine coolant temperature is one of the fundamental parameters for the proper functioning of the engine. The vehicle's onboard diagnostics system was unable to detect the malfunction of the thermostat. As a consequence, fuel consumption increased, which was especially noticeable in winter. This paper evaluates the possibility of carrying out thermostat diagnostics using data obtained from the OBD system through a diagnostic interface ELM327, which is connected to the OBD-II connector and interfaced with Torque Pro software on a smartphone. Analysis of the data confirmed that the proposed diagnostic method was appropriate. Furthermore, the impact of the thermostat malfunction on different factors such as coolant temperature, cold engine warm-up time, parameters characterising thermostat cycling, and fuel consumption of the car were studied. It was found that, apart from the already mentioned decrease in coolant temperature, the thermostat hysteresis also decreased and the thermostat cycle time increased.
期刊介绍:
Diagnostyka – is a quarterly published by the Polish Society of Technical Diagnostics (PSTD). The journal “Diagnostyka” was established by the decision of the Presidium of Main Board of the Polish Society of Technical Diagnostics on August, 21st 2000 and replaced published since 1990 reference book of the PSTD named “Diagnosta”. In the years 2000-2003 there were issued annually two numbers of the journal, since 2004 “Diagnostyka” is issued as a quarterly. Research areas covered include: -theory of the technical diagnostics, -experimental diagnostic research of processes, objects and systems, -analytical, symptom and simulation models of technical objects, -algorithms, methods and devices for diagnosing, prognosis and genesis of condition of technical objects, -methods for detection, localization and identification of damages of technical objects, -artificial intelligence in diagnostics, neural nets, fuzzy systems, genetic algorithms, expert systems, -application of technical diagnostics, -diagnostic issues in mechanical and civil engineering, -medical and biological diagnostics with signal processing application, -structural health monitoring, -machines, -noise and vibration, -analysis of technical and civil systems.