AGRICULTURAL LAND PRICE PREDICTION USING MACHINE LEARNING ALGORITHMS

Maksym Butenko, Volodymyr Pavlenko
{"title":"AGRICULTURAL LAND PRICE PREDICTION USING MACHINE LEARNING ALGORITHMS","authors":"Maksym Butenko, Volodymyr Pavlenko","doi":"10.36994/2788-5518-2023-01-05-19","DOIUrl":null,"url":null,"abstract":"The paper considers the prediction of land value using LightGBM, Fast Tree, and Fast Forest machine learning methods. The training dataset is collected from the Internet and contains of 800 rows (in some cases there are data gaps for certain attributes). An overview of the problems of collecting such data is made. From the full dataset (D1), three additional ones were created: without data on land rent price (D2), without data on normative monetary assessment (NMA) (D3) and without data on rent price and NMA (D4). Using the LightGBM method has the best prediction results, but in some cases Fast Tree’s prediction quality is similar to LightGBM. Removing NMA data from the dataset improves the quality of prediction, because after calculations it turned out that there is no correlation between market value and NMA. Also, unlike real estate value prediction, gradient boosting methods provides better results. A correct prediction is defined as a prediction with no more than 10% error, which follow similar approaches in other researches. Depending on the dataset and the chosen method of machine learning, the quality of prediction ranges from 35% to 92% of correct predictions. The paper describes research’s limitations and possible ways to improve the quality of land price predictions for reviewed machine learning methods.","PeriodicalId":165726,"journal":{"name":"Інфокомунікаційні та комп’ютерні технології","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Інфокомунікаційні та комп’ютерні технології","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36994/2788-5518-2023-01-05-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the prediction of land value using LightGBM, Fast Tree, and Fast Forest machine learning methods. The training dataset is collected from the Internet and contains of 800 rows (in some cases there are data gaps for certain attributes). An overview of the problems of collecting such data is made. From the full dataset (D1), three additional ones were created: without data on land rent price (D2), without data on normative monetary assessment (NMA) (D3) and without data on rent price and NMA (D4). Using the LightGBM method has the best prediction results, but in some cases Fast Tree’s prediction quality is similar to LightGBM. Removing NMA data from the dataset improves the quality of prediction, because after calculations it turned out that there is no correlation between market value and NMA. Also, unlike real estate value prediction, gradient boosting methods provides better results. A correct prediction is defined as a prediction with no more than 10% error, which follow similar approaches in other researches. Depending on the dataset and the chosen method of machine learning, the quality of prediction ranges from 35% to 92% of correct predictions. The paper describes research’s limitations and possible ways to improve the quality of land price predictions for reviewed machine learning methods.
基于机器学习算法的农业用地价格预测
本文考虑使用LightGBM、Fast Tree和Fast Forest机器学习方法进行土地价值预测。训练数据集从互联网上收集,包含800行(在某些情况下,某些属性存在数据缺口)。对收集这类数据的问题作了概述。从完整的数据集(D1)中,创建了另外三个数据集:没有土地租金价格数据(D2),没有规范性货币评估数据(NMA) (D3),没有租金价格和NMA数据(D4)。使用LightGBM方法预测效果最好,但在某些情况下Fast Tree的预测质量与LightGBM相似。从数据集中去除NMA数据提高了预测的质量,因为经过计算发现市场价值和NMA之间没有相关性。此外,与房地产价值预测不同,梯度增强方法提供了更好的结果。正确预测的定义是预测误差不超过10%,其他研究也采用了类似的方法。根据数据集和选择的机器学习方法,预测的质量在正确预测的35%到92%之间。本文描述了研究的局限性和可能的方法,以提高审查机器学习方法的土地价格预测质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信