Bentonite/hydroxyethylcellulose as eco-dielectrics with potential utilization in energy storage

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0073
Andreea Irina Barzic, Iuliana Stoica, Mihai Asandulesa, Raluca Marinica Albu, Bogdan Oprisan
{"title":"Bentonite/hydroxyethylcellulose as eco-dielectrics with potential utilization in energy storage","authors":"Andreea Irina Barzic, Iuliana Stoica, Mihai Asandulesa, Raluca Marinica Albu, Bogdan Oprisan","doi":"10.1515/epoly-2023-0073","DOIUrl":null,"url":null,"abstract":"Abstract This study deals with the preparation and characterization of novel composites accomplished by filling hydroxyethylcellulose with several amounts of bentonite. Molecular modeling enabled understanding the conformational and physicochemical features, which are responsible for the chemical reactivity parameters. Rheological analyses are made to investigate the effect of the polymer loading on the shear flow behavior. The morphology and homogeneity of each system is explored via optical microscopy. The band gap of the samples is slightly reduced by the addition of the bio-filler in the cellulosic medium, as indicated by UV-VIS spectral data. The dielectric response of these materials is extracted from refractometry experiments at several wavelengths. The electric energy density was achieved based on the dielectric properties determined at high and low frequencies. The outcome of this study offers new ways to produce alternative dielectric eco-materials having a good potential of accumulating electrical energy, as demanded for capacitor devices.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"36 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0073","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study deals with the preparation and characterization of novel composites accomplished by filling hydroxyethylcellulose with several amounts of bentonite. Molecular modeling enabled understanding the conformational and physicochemical features, which are responsible for the chemical reactivity parameters. Rheological analyses are made to investigate the effect of the polymer loading on the shear flow behavior. The morphology and homogeneity of each system is explored via optical microscopy. The band gap of the samples is slightly reduced by the addition of the bio-filler in the cellulosic medium, as indicated by UV-VIS spectral data. The dielectric response of these materials is extracted from refractometry experiments at several wavelengths. The electric energy density was achieved based on the dielectric properties determined at high and low frequencies. The outcome of this study offers new ways to produce alternative dielectric eco-materials having a good potential of accumulating electrical energy, as demanded for capacitor devices.
膨润土/羟乙基纤维素作为具有储能潜力的生态介质
摘要:本文研究了用少量膨润土填充羟乙基纤维素的新型复合材料的制备和表征。分子建模使我们能够理解化学反应参数的构象和物理化学特征。通过流变学分析研究了聚合物载荷对剪切流动行为的影响。每个系统的形态和均匀性通过光学显微镜进行了探索。紫外可见光谱数据表明,在纤维素培养基中加入生物填料后,样品的带隙略有减小。这些材料的介电响应是从几个波长的折射实验中提取出来的。电能密度是基于在高频和低频下确定的介电特性来实现的。这项研究的结果为生产具有良好蓄能潜力的替代介电生态材料提供了新的方法,这是电容器器件所需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信