Jacob Gonzalez-Villagomez, Esau Gonzalez-Villagomez, Carlos Rodriguez-Donate, Eduardo Cabal-Yepez, Luis Manuel Ledesma-Carrillo, Geovanni Hernández-Gómez
{"title":"An Experimental Study of the Empirical Identification Method to Infer an Unknown System Transfer Function","authors":"Jacob Gonzalez-Villagomez, Esau Gonzalez-Villagomez, Carlos Rodriguez-Donate, Eduardo Cabal-Yepez, Luis Manuel Ledesma-Carrillo, Geovanni Hernández-Gómez","doi":"10.3390/robotics12050140","DOIUrl":null,"url":null,"abstract":"Identification is considered a very important procedure, within the control area, to estimate the best-possible approximate model among different designs. Its significance comes from the fact that more than 75% of the cost associated with an advanced control project is aimed at obtaining a precise mathematical modeling. Therefore, in this work, an exhaustive analysis was carried out to determine the appropriate input stimulus for an unknown real system that must be controlled, with the aim of accurately estimating its transfer function (TF) using the empirical identification method (gray-box). The analysis was performed quantitatively by means of three tests: (i) the PID controller step response was evaluated theoretically; (ii) the controller performance was assessed in a Cartesian robot by tracking a trajectory defined through a Gaussian acceleration profile; (iii) the efficiency of the determined input stimulus with the best performance on inferring the TF for the system to be controlled was verified by assessing its operation in a real system, through repeatability tests, utilizing the integral errors.","PeriodicalId":37568,"journal":{"name":"Robotics","volume":"116 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics12050140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Identification is considered a very important procedure, within the control area, to estimate the best-possible approximate model among different designs. Its significance comes from the fact that more than 75% of the cost associated with an advanced control project is aimed at obtaining a precise mathematical modeling. Therefore, in this work, an exhaustive analysis was carried out to determine the appropriate input stimulus for an unknown real system that must be controlled, with the aim of accurately estimating its transfer function (TF) using the empirical identification method (gray-box). The analysis was performed quantitatively by means of three tests: (i) the PID controller step response was evaluated theoretically; (ii) the controller performance was assessed in a Cartesian robot by tracking a trajectory defined through a Gaussian acceleration profile; (iii) the efficiency of the determined input stimulus with the best performance on inferring the TF for the system to be controlled was verified by assessing its operation in a real system, through repeatability tests, utilizing the integral errors.
期刊介绍:
Robotics publishes original papers, technical reports, case studies, review papers and tutorials in all the aspects of robotics. Special Issues devoted to important topics in advanced robotics will be published from time to time. It particularly welcomes those emerging methodologies and techniques which bridge theoretical studies and applications and have significant potential for real-world applications. It provides a forum for information exchange between professionals, academicians and engineers who are working in the area of robotics, helping them to disseminate research findings and to learn from each other’s work. Suitable topics include, but are not limited to: -intelligent robotics, mechatronics, and biomimetics -novel and biologically-inspired robotics -modelling, identification and control of robotic systems -biomedical, rehabilitation and surgical robotics -exoskeletons, prosthetics and artificial organs -AI, neural networks and fuzzy logic in robotics -multimodality human-machine interaction -wireless sensor networks for robot navigation -multi-sensor data fusion and SLAM