E. Alpınar , M. O. Kaya , Ö. Güleç , T. Demirci , Y. Kaya , M. Arslan
{"title":"Benzenesulfonamide based 1,3,4-oxadiazole derivatives: synthesis, pharmacokinetic property prediction, bovine carbonic anhydrase activity and molecular docking studies","authors":"E. Alpınar , M. O. Kaya , Ö. Güleç , T. Demirci , Y. Kaya , M. Arslan","doi":"10.1080/17415993.2023.2257822","DOIUrl":null,"url":null,"abstract":"<div><p>Sulphur-containing compounds are highly significant as they can possess a variety of biological activities that make them useful for pharmacological purposes and for the mechanism by which drugs such as antibiotics bind to and disrupt bacterial cell walls. In this study, novel thioalkyl substituted-1,3,4 oxadiazole-bearing sulfonamide compounds have been successfully synthesized and characterized by <sup>1</sup>HNMR, <sup>13</sup>CNMR, IR and elemental analysis. The effects of different thioalkyl groups on the 1,3,4 oxadiazole group, the IC<sub>50</sub> value for Bovine Carbonic Anhydrase (BCA) found by <em>in vitro</em>, density functional theory (DFT) calculations, pharmacokinetics prediction and molecular docking are aimed to reveal the interactions on BCA. Firstly, pharmacokinetic predictions of thioalkyl substituted 1,3,4-oxadiazole compounds were generated to predict their potential hazards. Secondly, the predicted molecular docking data and 2D interaction were analyzed based on the best configuration from DFT optimization. Finally, the inhibition against BCA was analyzed <em>in vitro</em> and compared with the theoretical data. The compound <strong>(5o)</strong> has the best value such as IC<sub>50 </sub>= 51.80 µM, HOMO–LUMO (ΔE 4.488 Ev), ΔG −7.69 kcal/mol, Full fitness −2152.72 FF and predicted toxicity results showed no significant results except hepatotoxicity.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1741599323000971","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulphur-containing compounds are highly significant as they can possess a variety of biological activities that make them useful for pharmacological purposes and for the mechanism by which drugs such as antibiotics bind to and disrupt bacterial cell walls. In this study, novel thioalkyl substituted-1,3,4 oxadiazole-bearing sulfonamide compounds have been successfully synthesized and characterized by 1HNMR, 13CNMR, IR and elemental analysis. The effects of different thioalkyl groups on the 1,3,4 oxadiazole group, the IC50 value for Bovine Carbonic Anhydrase (BCA) found by in vitro, density functional theory (DFT) calculations, pharmacokinetics prediction and molecular docking are aimed to reveal the interactions on BCA. Firstly, pharmacokinetic predictions of thioalkyl substituted 1,3,4-oxadiazole compounds were generated to predict their potential hazards. Secondly, the predicted molecular docking data and 2D interaction were analyzed based on the best configuration from DFT optimization. Finally, the inhibition against BCA was analyzed in vitro and compared with the theoretical data. The compound (5o) has the best value such as IC50 = 51.80 µM, HOMO–LUMO (ΔE 4.488 Ev), ΔG −7.69 kcal/mol, Full fitness −2152.72 FF and predicted toxicity results showed no significant results except hepatotoxicity.
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.