{"title":"Quantifying the Respiratory Pattern of Rhizosphere Microbial Communities in Healthy and Diseased Tomato Plants Using Carbon Substrates","authors":"Afeez Adesina Adedayo, Ayomide Emmanuel Fadiji, Olubukola Oluranti Babalola","doi":"10.1007/s42729-023-01504-z","DOIUrl":null,"url":null,"abstract":"Abstract The sustainable production of tomatoes ( Solanum lycopersicum ) is important, and this can be achieved by determining the rate of respiration of microbes in the tomato plants' rhizosphere soil. This study aimed at the potential of microbes to utilize carbon substrates embedded in the rhizosphere soil thereby contributing to the healthy nature of the tomato plants. The potential soil physiochemical features and utilization of carbon substrate by soil microorganisms as a result of their respiration to reveal their functions in the ecosystem were evaluated. The soil samples were amassed from the healthy tomato plant rhizosphere, diseased tomatoes, and bulk soil in this study. The physiochemical features and carbon substrate utilization in the bulk soil samples, and rhizosphere samples of powdery diseased, and healthy tomato plants were assessed. The MicroRespTM procedure was used to determine the community-level physiological profiles (CLPP) employing fifteen (15) carbon (C) substrates selected based on their importance to microbial communities embedded in the soil samples. Our results revealed that various physiochemical properties, moisture content, water retention, and C substrates including sugar, amino acid, and carboxylic acid were greater in HR and the substrates were not significantly different ( p < 0.05). The study reveals higher soil respiration in HR as a result of the microbial communities inhabiting HR utilizing more of the C-substrates. This investigation contributes to the tomato plant's healthy state as the microbial communities utilized carbon substrate compared to DR after employing the CLPP assays.","PeriodicalId":49023,"journal":{"name":"Journal of Soil Science and Plant Nutrition","volume":"65 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil Science and Plant Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42729-023-01504-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The sustainable production of tomatoes ( Solanum lycopersicum ) is important, and this can be achieved by determining the rate of respiration of microbes in the tomato plants' rhizosphere soil. This study aimed at the potential of microbes to utilize carbon substrates embedded in the rhizosphere soil thereby contributing to the healthy nature of the tomato plants. The potential soil physiochemical features and utilization of carbon substrate by soil microorganisms as a result of their respiration to reveal their functions in the ecosystem were evaluated. The soil samples were amassed from the healthy tomato plant rhizosphere, diseased tomatoes, and bulk soil in this study. The physiochemical features and carbon substrate utilization in the bulk soil samples, and rhizosphere samples of powdery diseased, and healthy tomato plants were assessed. The MicroRespTM procedure was used to determine the community-level physiological profiles (CLPP) employing fifteen (15) carbon (C) substrates selected based on their importance to microbial communities embedded in the soil samples. Our results revealed that various physiochemical properties, moisture content, water retention, and C substrates including sugar, amino acid, and carboxylic acid were greater in HR and the substrates were not significantly different ( p < 0.05). The study reveals higher soil respiration in HR as a result of the microbial communities inhabiting HR utilizing more of the C-substrates. This investigation contributes to the tomato plant's healthy state as the microbial communities utilized carbon substrate compared to DR after employing the CLPP assays.
期刊介绍:
The Journal of Soil Science and Plant Nutrition is an international, peer reviewed journal devoted to publishing original research findings in the areas of soil science, plant nutrition, agriculture and environmental science.
Soil sciences submissions may cover physics, chemistry, biology, microbiology, mineralogy, ecology, pedology, soil classification and amelioration.
Plant nutrition and agriculture submissions may include plant production, physiology and metabolism of plants, plant ecology, diversity and sustainability of agricultural systems, organic and inorganic fertilization in relation to their impact on yields, quality of plants and ecological systems, and agroecosystems studies.
Submissions covering soil degradation, environmental pollution, nature conservation, and environmental protection are also welcome.
The journal considers for publication original research articles, technical notes, short communication, and reviews (both voluntary and by invitation), and letters to the editor.