A flexible short recurrence Krylov subspace method for matrices arising in the time integration of port-Hamiltonian systems and ODEs/DAEs with a dissipative Hamiltonian
IF 1.6 3区 数学Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
{"title":"A flexible short recurrence Krylov subspace method for matrices arising in the time integration of port-Hamiltonian systems and ODEs/DAEs with a dissipative Hamiltonian","authors":"Malak Diab, Andreas Frommer, Karsten Kahl","doi":"10.1007/s10543-023-00999-3","DOIUrl":null,"url":null,"abstract":"Abstract For several classes of mathematical models that yield linear systems, the splitting of the matrix into its Hermitian and skew Hermitian parts is naturally related to properties of the underlying model. This is particularly so for discretizations of dissipative Hamiltonian ODEs, DAEs and port-Hamiltonian systems where, in addition, the Hermitian part is positive definite or semi-definite. It is then possible to develop short recurrence optimal Krylov subspace methods in which the Hermitian part is used as a preconditioner. In this paper, we develop new, right preconditioned variants of this approach which, as their crucial new feature, allow the systems with the Hermitian part to be solved only approximately in each iteration while keeping the short recurrences. This new class of methods is particularly efficient as it allows, for example, to use few steps of a multigrid solver or a (preconditioned) CG method for the Hermitian part in each iteration. We illustrate this with several numerical experiments for large scale systems.","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"47 9","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10543-023-00999-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract For several classes of mathematical models that yield linear systems, the splitting of the matrix into its Hermitian and skew Hermitian parts is naturally related to properties of the underlying model. This is particularly so for discretizations of dissipative Hamiltonian ODEs, DAEs and port-Hamiltonian systems where, in addition, the Hermitian part is positive definite or semi-definite. It is then possible to develop short recurrence optimal Krylov subspace methods in which the Hermitian part is used as a preconditioner. In this paper, we develop new, right preconditioned variants of this approach which, as their crucial new feature, allow the systems with the Hermitian part to be solved only approximately in each iteration while keeping the short recurrences. This new class of methods is particularly efficient as it allows, for example, to use few steps of a multigrid solver or a (preconditioned) CG method for the Hermitian part in each iteration. We illustrate this with several numerical experiments for large scale systems.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.