{"title":"Thermal Characteristics Enhancement of AN/Mg/NC Composite Using Activated Carbon/Cobalt Oxide as Highly Effective Catalytic Additive","authors":"Zhanerke Yelemessova, Symbat Kydyrbekova, Ayan Yerken","doi":"10.3390/jcs7110471","DOIUrl":null,"url":null,"abstract":"Our study examined the potential of using activated carbon/nanosized cobalt oxide (AC-Co3O4) as a new catalytic additive to improve the efficiency of the parent ammonium nitrate/magnesium/nitrocellulose (AN/Mg/NC) composite. These findings demonstrate a significant improvement in the thermal characteristics of AN/Mg/NC/AC-Co3O4 compared to the initial AN/Mg/NC. Raman spectra confirmed the multilayered nature of AC. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of cobalt oxide in the synthesized additive. Differential scanning calorimetry (DSC) revealed the catalytic effect of AC-Co3O4 on the AN/Mg/NC composite, resulting in the reduction in the decomposition peak temperature (Tmax) from 277.4 °C (for AN/Mg/NC) to 215.2 °C (for AN/Mg/NC/AC-Co3O4). Thermal gravimetric analysis (TG) determined the overall mass losses (%) for AN/Mg/NC (70%), AN/Mg/NC/AC (75%), and AN/Mg/NC/AC-Co3O4 (80%). This analysis highlights the significant role of AC-Co3O4 in enhancing the energy release during decomposition. Moreover, the use of the differential thermogravimetric (DTG) technique demonstrated the two-step decomposition pathways attributed to the multi-component system. Finally, the combustion tests under the pressure of 3.5 MPa validated the catalytic efficiency of the AC-Co3O4 additive, which enhanced the burning rate (rb) of the AN/Mg/NC/AC-Co3O4 composite from 10.29 to 19.84 mm/s compared to the initial AN/Mg/NC composite. The advantageous nature of the AN/Mg/NC/AC-Co3O4 composite with a lowered decomposition temperature can be applied in rocket propulsion systems, where the precise control of combustion and ignition processes is crucial.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"23 19","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs7110471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Our study examined the potential of using activated carbon/nanosized cobalt oxide (AC-Co3O4) as a new catalytic additive to improve the efficiency of the parent ammonium nitrate/magnesium/nitrocellulose (AN/Mg/NC) composite. These findings demonstrate a significant improvement in the thermal characteristics of AN/Mg/NC/AC-Co3O4 compared to the initial AN/Mg/NC. Raman spectra confirmed the multilayered nature of AC. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of cobalt oxide in the synthesized additive. Differential scanning calorimetry (DSC) revealed the catalytic effect of AC-Co3O4 on the AN/Mg/NC composite, resulting in the reduction in the decomposition peak temperature (Tmax) from 277.4 °C (for AN/Mg/NC) to 215.2 °C (for AN/Mg/NC/AC-Co3O4). Thermal gravimetric analysis (TG) determined the overall mass losses (%) for AN/Mg/NC (70%), AN/Mg/NC/AC (75%), and AN/Mg/NC/AC-Co3O4 (80%). This analysis highlights the significant role of AC-Co3O4 in enhancing the energy release during decomposition. Moreover, the use of the differential thermogravimetric (DTG) technique demonstrated the two-step decomposition pathways attributed to the multi-component system. Finally, the combustion tests under the pressure of 3.5 MPa validated the catalytic efficiency of the AC-Co3O4 additive, which enhanced the burning rate (rb) of the AN/Mg/NC/AC-Co3O4 composite from 10.29 to 19.84 mm/s compared to the initial AN/Mg/NC composite. The advantageous nature of the AN/Mg/NC/AC-Co3O4 composite with a lowered decomposition temperature can be applied in rocket propulsion systems, where the precise control of combustion and ignition processes is crucial.